% Demonstrates the use of the EVALUATION() functions. | |
% choose a task-set combination | |
split = 'variant_test' ; | |
%split = 'variant_trainval' ; | |
%split = 'family_test' ; | |
%split = 'manufacturer_test' ; | |
switch 1 | |
case 1 | |
% Example 1: the evaluation set contains exactly one image-label pair | |
images = {'0900914'} ; | |
labels = {'747-400'} ; | |
scores = 1 ; | |
case 2 | |
% Example 2: the evaluation set contains exactly all the ground truth image-label pairs (perfect | |
% performance). | |
[images, labels] = textread(fullfile('data', ['images_' split '.txt']), '%7s%*1s%s', 'delimiter', '\n', 'whitespace', '') ; | |
scores = ones(size(labels)) ; | |
case 3 | |
% Example 3: the evaluation set contains all the possible | |
% image-label pair and random scores. Numeric inputs are used | |
% for efficiency. | |
[images0, labels0] = textread(fullfile('data', ['images_' split '.txt']), '%7s%*1s%s', 'delimiter', '\n', 'whitespace', '') ; | |
n = numel(images0) ; | |
clear images labels scores ; | |
for ci = 1:100 | |
images{ci} = 1:n ; | |
labels{ci} = repmat(ci,1,n) ; | |
scores{ci} = randn(1,n) ; | |
end | |
images = [images{:}] ; | |
labels = [labels{:}] ; | |
scores = [scores{:}] ; | |
end | |
[confusion, results] = evaluation('data', split, images, labels, scores) ; | |
figure(1) ; clf ; | |
imagesc(confusion) ; axis tight equal ; | |
xlabel('predicted') ; | |
ylabel('ground truth') ; | |
title(sprintf('mean accuracy: %.2f %%\n', mean(diag(confusion))*100)) ; | |