% Demonstrates the use of the EVALUATION() functions. % choose a task-set combination split = 'variant_test' ; %split = 'variant_trainval' ; %split = 'family_test' ; %split = 'manufacturer_test' ; switch 1 case 1 % Example 1: the evaluation set contains exactly one image-label pair images = {'0900914'} ; labels = {'747-400'} ; scores = 1 ; case 2 % Example 2: the evaluation set contains exactly all the ground truth image-label pairs (perfect % performance). [images, labels] = textread(fullfile('data', ['images_' split '.txt']), '%7s%*1s%s', 'delimiter', '\n', 'whitespace', '') ; scores = ones(size(labels)) ; case 3 % Example 3: the evaluation set contains all the possible % image-label pair and random scores. Numeric inputs are used % for efficiency. [images0, labels0] = textread(fullfile('data', ['images_' split '.txt']), '%7s%*1s%s', 'delimiter', '\n', 'whitespace', '') ; n = numel(images0) ; clear images labels scores ; for ci = 1:100 images{ci} = 1:n ; labels{ci} = repmat(ci,1,n) ; scores{ci} = randn(1,n) ; end images = [images{:}] ; labels = [labels{:}] ; scores = [scores{:}] ; end [confusion, results] = evaluation('data', split, images, labels, scores) ; figure(1) ; clf ; imagesc(confusion) ; axis tight equal ; xlabel('predicted') ; ylabel('ground truth') ; title(sprintf('mean accuracy: %.2f %%\n', mean(diag(confusion))*100)) ;