from datasets import Dataset, DatasetDict, load_dataset, concatenate_datasets import pandas as pd import os def prepare_nqii(path, split="train"): ds = load_dataset(path) ds = ds[split] # to dataframe df = pd.DataFrame(ds) df = df.drop(columns=["title"]) df["start"] = df["answers"].apply(lambda x: x["answer_start"]) df["answers"] = df["answers"].apply(lambda x: x["text"]) # change type ds = Dataset.from_pandas(df) return ds def prepare_ruquad(path): df = pd.read_json(path) # filter df = df[df["type"] == "ANSWERED_WITH_SPAN"] # drop index df = df.reset_index(drop=True) df = df.rename(columns={"question_id":"id", "paragraph": "context", "span":"answers"}) df = df.drop(columns=[ "type", "answer_id", "article_id", "end", "source", "answer"]) df["start"] = df["start"].astype(int) df["answers"] = df["answers"].apply(lambda x: [x]) df["start"] = df["start"].apply(lambda x: [x]) ds = Dataset.from_pandas(df) return ds def download_ruquad(): os.system("curl --remote-name-all https://repository.clarin.is/repository/xmlui/bitstream/handle/20.500.12537/310{/RUQuAD1.zip}") os.system("unzip RUQuAD1.zip") if __name__ == "__main__": nqii_train = prepare_nqii("vesteinn/icelandic-qa-NQiI", split="train") ruquad_train = prepare_ruquad("train.json") train = concatenate_datasets([nqii_train, ruquad_train]) val = prepare_nqii("vesteinn/icelandic-qa-NQiI", split="validation") nqi_test = prepare_nqii("vesteinn/icelandic-qa-NQiI", split="test") ruquad_test = prepare_ruquad("test.json") test = concatenate_datasets([nqi_test, ruquad_test]) dataset = DatasetDict({"train": train, "validation": val, "test": test}) print(dataset) dataset.push_to_hub("Sigurdur/nqii_ruqad")