File size: 2,415 Bytes
a6927f7 73fab8e a6927f7 73fab8e a6927f7 0e50727 d8abc42 22a83c8 bdb9e26 22a83c8 72958dc afdd78e 22a83c8 bdb9e26 0e50727 22a83c8 0e50727 22a83c8 0e50727 73fab8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: gpl-3.0
tags:
- Tracking
- VOT
- Video
- Motion
- Propagation
pretty_name: >-
TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the
Wild
size_categories:
- 10K<n<100K
---
# TrackingNet devkit
This repository contains the data of the paper [TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild](https://huggingface.co/papers/1803.10794).
## Download from HuggingFace
### Download splits
```python
from huggingface_hub import snapshot_download
# Download TRAIN_0 split (90GB)
snapshot_download(repo_id="SilvioGiancola/TrackingNet",
repo_type="dataset", revision="main",
local_dir="TrackingNet_HF",
allow_patterns="*TRAIN_0/*")
# Download TEST split (35GB)
snapshot_download(repo_id="SilvioGiancola/TrackingNet",
repo_type="dataset", revision="main",
local_dir="TrackingNet_HF",
allow_patterns="*TEST/*")
# Download all TRAIN splits (1.2TB)
snapshot_download(repo_id="SilvioGiancola/TrackingNet",
repo_type="dataset", revision="main",
local_dir="TrackingNet_HF",
allow_patterns="*TRAIN*")
```
## TrackingNet pip package
```bash
conda create -n TrackingNet python pip
pip install TrackingNet
```
### Utility functions for TrackingNet
```python
from TrackingNet.utils import getListSplit
# Get list of codenames for the 12 training + testing split
TrackingNetSplits = getListSplit()
print(getListSplit())
# returns ["TEST", "TRAIN_0", "TRAIN_1", "TRAIN_2", "TRAIN_3", "TRAIN_4", "TRAIN_5", "TRAIN_6", "TRAIN_7", "TRAIN_8", "TRAIN_9", "TRAIN_10", "TRAIN_11"]
# Get list of tracking sequences
print(getListSequence(split=TrackingNetSplits[1])) # return list of tracking sequences in that split
print(getListSequence(split="TEST")) # return list of tracking sequences for testing
print(getListSequence(split=["TRAIN_0", "TRAIN_1"])) # return list of tracking sequences for train splits 0 and 1
print(getListSequence(split="TRAIN")) # return list of tracking sequences for al train splits
```
### Downloading TrackingNet
```python
from TrackingNet.Downloader import TrackingNetDownloader
from TrackingNet.utils import getListSplit
downloader = TrackingNetDownloader(LocalDirectory="path/to/TrackingNet")
for split in getListSplit():
downloader.downloadSplit(split)
``` |