File size: 2,415 Bytes
a6927f7
 
 
73fab8e
a6927f7
73fab8e
 
 
a6927f7
 
 
 
 
 
0e50727
 
 
d8abc42
 
22a83c8
 
bdb9e26
22a83c8
72958dc
 
 
afdd78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a83c8
 
 
bdb9e26
0e50727
 
 
 
 
22a83c8
0e50727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a83c8
0e50727
 
 
 
 
 
 
 
 
73fab8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: gpl-3.0
tags:
- Tracking
- VOT
- Video
- Motion
- Propagation
pretty_name: >-
  TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the
  Wild
size_categories:
- 10K<n<100K
---

# TrackingNet devkit

This repository contains the data of the paper [TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild](https://huggingface.co/papers/1803.10794).

## Download from HuggingFace

### Download splits

```python
from huggingface_hub import snapshot_download

# Download TRAIN_0 split (90GB)
snapshot_download(repo_id="SilvioGiancola/TrackingNet", 
                  repo_type="dataset", revision="main",
                  local_dir="TrackingNet_HF", 
                  allow_patterns="*TRAIN_0/*")
# Download TEST split (35GB)
snapshot_download(repo_id="SilvioGiancola/TrackingNet", 
                  repo_type="dataset", revision="main",
                  local_dir="TrackingNet_HF", 
                  allow_patterns="*TEST/*")
# Download all TRAIN splits (1.2TB)
snapshot_download(repo_id="SilvioGiancola/TrackingNet", 
                  repo_type="dataset", revision="main",
                  local_dir="TrackingNet_HF", 
                  allow_patterns="*TRAIN*")
```

## TrackingNet pip package

```bash
conda create -n TrackingNet python pip
pip install TrackingNet
```

### Utility functions for TrackingNet

```python
from TrackingNet.utils import getListSplit

# Get list of codenames for the 12 training + testing split
TrackingNetSplits = getListSplit()
print(getListSplit())
# returns ["TEST", "TRAIN_0", "TRAIN_1", "TRAIN_2", "TRAIN_3", "TRAIN_4", "TRAIN_5", "TRAIN_6", "TRAIN_7", "TRAIN_8", "TRAIN_9", "TRAIN_10", "TRAIN_11"]


# Get list of tracking sequences
print(getListSequence(split=TrackingNetSplits[1])) # return list of tracking sequences in that split
print(getListSequence(split="TEST")) # return list of tracking sequences for testing
print(getListSequence(split=["TRAIN_0", "TRAIN_1"])) # return list of tracking sequences for train splits 0 and 1
print(getListSequence(split="TRAIN")) # return list of tracking sequences for al train splits
```

### Downloading TrackingNet

```python
from TrackingNet.Downloader import TrackingNetDownloader
from TrackingNet.utils import getListSplit

downloader = TrackingNetDownloader(LocalDirectory="path/to/TrackingNet")

for split in getListSplit():
    downloader.downloadSplit(split)
```