Librarian Bot: Add language metadata for dataset
Browse filesThis pull request aims to enrich the metadata of your dataset by adding language metadata to `YAML` block of your dataset card `README.md`.
How did we find this information?
- The librarian-bot downloaded a sample of rows from your dataset using the [dataset-server](https://huggingface.co/docs/datasets-server/) library
- The librarian-bot used a language detection model to predict the likely language of your dataset. This was done on columns likely to contain text data.
- Predictions for rows are aggregated by language and a filter is applied to remove languages which are very infrequently predicted
- A confidence threshold is applied to remove languages which are not confidently predicted
The following languages were detected with the following mean probabilities:
- Thai (th): 95.29%
If this PR is merged, the language metadata will be added to your dataset card. This will allow users to filter datasets by language on the [Hub](https://huggingface.co/datasets).
If the language metadata is incorrect, please feel free to close this PR.
To merge this PR, you can use the merge button below the PR:
![Screenshot 2024-02-06 at 15.27.46.png](https://cdn-uploads.huggingface.co/production/uploads/63d3e0e8ff1384ce6c5dd17d/1PRE3CoDpg_wfThC6U1w0.png)
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bots). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to
@davanstrien
.
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
dataset_info:
|
3 |
features:
|
4 |
- name: text
|
@@ -7,180 +9,179 @@ dataset_info:
|
|
7 |
dtype:
|
8 |
class_label:
|
9 |
names:
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
splits:
|
185 |
- name: train
|
186 |
num_bytes: 8958
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- th
|
4 |
dataset_info:
|
5 |
features:
|
6 |
- name: text
|
|
|
9 |
dtype:
|
10 |
class_label:
|
11 |
names:
|
12 |
+
'0': 0
|
13 |
+
'1': 12
|
14 |
+
'2': 15
|
15 |
+
'3': 20
|
16 |
+
'4': 810
|
17 |
+
'5': A1
|
18 |
+
'6': A10
|
19 |
+
'7': A11
|
20 |
+
'8': A12
|
21 |
+
'9': A13
|
22 |
+
'10': A14
|
23 |
+
'11': A15
|
24 |
+
'12': A16
|
25 |
+
'13': A17
|
26 |
+
'14': A18
|
27 |
+
'15': A19
|
28 |
+
'16': A2
|
29 |
+
'17': A20
|
30 |
+
'18': A21
|
31 |
+
'19': A22
|
32 |
+
'20': A23
|
33 |
+
'21': A24
|
34 |
+
'22': A25
|
35 |
+
'23': A26
|
36 |
+
'24': A27
|
37 |
+
'25': A28
|
38 |
+
'26': A29
|
39 |
+
'27': A3
|
40 |
+
'28': A4
|
41 |
+
'29': A5
|
42 |
+
'30': A6
|
43 |
+
'31': A7
|
44 |
+
'32': A8
|
45 |
+
'33': A9
|
46 |
+
'34': AAA
|
47 |
+
'35': AT1
|
48 |
+
'36': AT2
|
49 |
+
'37': AV1
|
50 |
+
'38': AV2
|
51 |
+
'39': AV3
|
52 |
+
'40': AV4
|
53 |
+
'41': AV5
|
54 |
+
'42': AV6
|
55 |
+
'43': BP
|
56 |
+
'44': BP3
|
57 |
+
'45': BP4
|
58 |
+
'46': BP5
|
59 |
+
'47': BPS
|
60 |
+
'48': D1
|
61 |
+
'49': D2
|
62 |
+
'50': D3
|
63 |
+
'51': DI
|
64 |
+
'52': DL
|
65 |
+
'53': DP
|
66 |
+
'54': DS
|
67 |
+
'55': DS1
|
68 |
+
'56': EAB
|
69 |
+
'57': EAL
|
70 |
+
'58': EAP
|
71 |
+
'59': EAR
|
72 |
+
'60': ECB
|
73 |
+
'61': ECL
|
74 |
+
'62': ECR
|
75 |
+
'63': EE
|
76 |
+
'64': EEP
|
77 |
+
'65': EN
|
78 |
+
'66': EOB
|
79 |
+
'67': EOL
|
80 |
+
'68': EOP
|
81 |
+
'69': EOR
|
82 |
+
'70': ER
|
83 |
+
'71': EY
|
84 |
+
'72': EYB
|
85 |
+
'73': EYL
|
86 |
+
'74': EYR
|
87 |
+
'75': GB
|
88 |
+
'76': GK
|
89 |
+
'77': GL
|
90 |
+
'78': GP
|
91 |
+
'79': GP1
|
92 |
+
'80': GP2
|
93 |
+
'81': IA
|
94 |
+
'82': ID
|
95 |
+
'83': IK
|
96 |
+
'84': IL
|
97 |
+
'85': IM
|
98 |
+
'86': IMP
|
99 |
+
'87': IMW
|
100 |
+
'88': IP
|
101 |
+
'89': ISV
|
102 |
+
'90': IT
|
103 |
+
'91': IV
|
104 |
+
'92': IVD
|
105 |
+
'93': IVF
|
106 |
+
'94': IVS
|
107 |
+
'95': IVT
|
108 |
+
'96': IW
|
109 |
+
'97': KM
|
110 |
+
'98': KP
|
111 |
+
'99': MF
|
112 |
+
'100': MI
|
113 |
+
'101': MM
|
114 |
+
'102': NC
|
115 |
+
'103': NC1
|
116 |
+
'104': OB
|
117 |
+
'105': OB3
|
118 |
+
'106': OR
|
119 |
+
'107': OR1
|
120 |
+
'108': OR10
|
121 |
+
'109': OR11
|
122 |
+
'110': OR12
|
123 |
+
'111': OR13
|
124 |
+
'112': OR14
|
125 |
+
'113': OR2
|
126 |
+
'114': OR3
|
127 |
+
'115': OR4
|
128 |
+
'116': OR5
|
129 |
+
'117': OR6
|
130 |
+
'118': OR7
|
131 |
+
'119': OR8
|
132 |
+
'120': OR9
|
133 |
+
'121': ORC
|
134 |
+
'122': OS
|
135 |
+
'123': PEE
|
136 |
+
'124': PK
|
137 |
+
'125': PKB
|
138 |
+
'126': PKL
|
139 |
+
'127': PM
|
140 |
+
'128': PS
|
141 |
+
'129': PTL
|
142 |
+
'130': RN
|
143 |
+
'131': S1
|
144 |
+
'132': S10
|
145 |
+
'133': S11
|
146 |
+
'134': S12
|
147 |
+
'135': S2
|
148 |
+
'136': S3
|
149 |
+
'137': S4
|
150 |
+
'138': S5
|
151 |
+
'139': S6
|
152 |
+
'140': S7
|
153 |
+
'141': S8
|
154 |
+
'142': S9
|
155 |
+
'143': S92
|
156 |
+
'144': SB
|
157 |
+
'145': SC
|
158 |
+
'146': SF
|
159 |
+
'147': SI
|
160 |
+
'148': SK
|
161 |
+
'149': SL
|
162 |
+
'150': SL1
|
163 |
+
'151': SLD
|
164 |
+
'152': SM
|
165 |
+
'153': ST
|
166 |
+
'154': SUB
|
167 |
+
'155': SW
|
168 |
+
'156': SWC
|
169 |
+
'157': TAK
|
170 |
+
'158': TIA
|
171 |
+
'159': TN
|
172 |
+
'160': X1
|
173 |
+
'161': X10
|
174 |
+
'162': X11
|
175 |
+
'163': X12
|
176 |
+
'164': X2
|
177 |
+
'165': X3
|
178 |
+
'166': X4
|
179 |
+
'167': X5
|
180 |
+
'168': X6
|
181 |
+
'169': X7
|
182 |
+
'170': X8
|
183 |
+
'171': X9
|
184 |
+
'172': Z
|
|
|
185 |
splits:
|
186 |
- name: train
|
187 |
num_bytes: 8958
|