File size: 5,587 Bytes
e54c647 389d322 e54c647 389d322 e54c647 389d322 e54c647 389d322 e54c647 389d322 e54c647 389d322 e54c647 40212e9 e54c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
import datasets
import json
from typing import List
import pandas as pd
_LICENSE = "http://www.apache.org/licenses/LICENSE-2.0"
_HOMEPAGE='https://huggingface.co/datasets/THUIR/T2Ranking'
_DESCRIPTION = 'T2Ranking: A large-scale Chinese benchmark for passage retrieval.'
_CITATION = """
@article{sigir2023,
title={T2Ranking},
author={Qian Dong},
volume={2023},
number={2},
pages={99-110},
year={2022}
}
"""
_URLS_DICT = {
"collection": "data/collection.tsv",
"qrels.train": "data/qrels.train.tsv",
"qrels.dev": "data/qrels.dev.tsv",
"qrels.retrieval.train": "qrels.retrieval.train.tsv",
"qrels.retrieval.dev": "qrels.retrieval.dev.tsv",
"queries.train": "data/queries.train.tsv",
"queries.test": "data/queries.test.tsv",
"queries.dev": "data/queries.dev.tsv",
"train.bm25.tsv": "data/train.bm25.tsv",
"train.mined.tsv": "data/train.mined.tsv",
}
_FEATURES_DICT = {
'collection': {
"pid": datasets.Value("int64"),
"text": datasets.Value("string"),
},
'qrels.train': {
"qid": datasets.Value("int64"),
"-": datasets.Value("int64"),
"pid": datasets.Value("int64"),
"rel": datasets.Value("int64"),
},
'qrels.retrieval.train': {
"qid": datasets.Value("int64"),
"pid": datasets.Value("int64"),
},
'qrels.dev': {
"qid": datasets.Value("int64"),
"-": datasets.Value("int64"),
"pid": datasets.Value("int64"),
"rel": datasets.Value("int64"),
},
'qrels.retrieval.dev': {
"qid": datasets.Value("int64"),
"pid": datasets.Value("int64"),
},
'queries.train': {
"qid": datasets.Value("int64"),
"text": datasets.Value("string"),
},
'queries.dev': {
"qid": datasets.Value("int64"),
"text": datasets.Value("string"),
},
'queries.test': {
"qid": datasets.Value("int64"),
"text": datasets.Value("string"),
},
"train.bm25.tsv": {
"qid": datasets.Value("int64"),
"pid": datasets.Value("int64"),
"score": datasets.Value("float32"),
},
"train.mined.tsv": {
"qid": datasets.Value("int64"),
"pid": datasets.Value("int64"),
"index": datasets.Value("int64"),
"score": datasets.Value("float32"),
},
}
class T2RankingConfig(datasets.BuilderConfig):
"""BuilderConfig for T2Ranking."""
def __init__(self, splits, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.splits = splits
class T2Ranking(datasets.GeneratorBasedBuilder):
"""The T2Ranking benchmark."""
BUILDER_CONFIGS = [
T2RankingConfig(
name="collection",
splits=['train'],
),
T2RankingConfig(
name="qrels.train",
splits=['train'],
),
T2RankingConfig(
name="qrels.dev",
splits=['train'],
),
T2RankingConfig(
name="queries.train",
splits=['train'],
),
T2RankingConfig(
name="queries.dev",
splits=['train'],
),
T2RankingConfig(
name="queries.test",
splits=['train'],
),
T2RankingConfig(
name="qrels.retrieval.train",
splits=['train'],
),
T2RankingConfig(
name="qrels.retrieval.dev",
splits=['train'],
),
T2RankingConfig(
name="train.bm25.tsv",
splits=['train'],
),
T2RankingConfig(
name="train.mined.tsv",
splits=['train'],
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(_FEATURES_DICT[self.config.name]),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
split_things = []
for split_name in self.config.splits:
# print('')
split_data_path = _URLS_DICT[self.config.name]
# print(split_data_path)
filepath = dl_manager.download(split_data_path)
# print(filepath)
# print('')
split_thing = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": filepath,
}
)
split_things.append(split_thing)
return split_things
def _generate_examples(self, filepath):
data = pd.read_csv(filepath, sep='\t', quoting=3)
keys = _FEATURES_DICT[self.config.name].keys()
for idx in range(data.shape[0]):
yield idx, {key: data[key][idx] for key in keys}
|