|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datasets |
|
import json |
|
from typing import List |
|
import pandas as pd |
|
|
|
_LICENSE = "http://www.apache.org/licenses/LICENSE-2.0" |
|
_HOMEPAGE='https://huggingface.co/datasets/THUIR/T2Ranking' |
|
|
|
_DESCRIPTION = 'T2Ranking: A large-scale Chinese benchmark for passage retrieval.' |
|
_CITATION = """ |
|
@article{sigir2023, |
|
title={T2Ranking}, |
|
author={Qian Dong}, |
|
volume={2023}, |
|
number={2}, |
|
pages={99-110}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_URLS_DICT = { |
|
"collection": "data/collection.tsv", |
|
"qrels.train": "data/qrels.train.tsv", |
|
"qrels.dev": "data/qrels.dev.tsv", |
|
"qrels.retrieval.train": "data/qrels.retrieval.train.tsv", |
|
"qrels.retrieval.dev": "data/qrels.retrieval.dev.tsv", |
|
"queries.train": "data/queries.train.tsv", |
|
"queries.test": "data/queries.test.tsv", |
|
"queries.dev": "data/queries.dev.tsv", |
|
"train.bm25.tsv": "data/train.bm25.tsv", |
|
"train.mined.tsv": "data/train.mined.tsv", |
|
} |
|
|
|
_FEATURES_DICT = { |
|
'collection': { |
|
"pid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
'qrels.train': { |
|
"qid": datasets.Value("int64"), |
|
"-": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"rel": datasets.Value("int64"), |
|
}, |
|
'qrels.retrieval.train': { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
}, |
|
'qrels.dev': { |
|
"qid": datasets.Value("int64"), |
|
"-": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"rel": datasets.Value("int64"), |
|
}, |
|
'qrels.retrieval.dev': { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
}, |
|
'queries.train': { |
|
"qid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
'queries.dev': { |
|
"qid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
'queries.test': { |
|
"qid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
"train.bm25.tsv": { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"score": datasets.Value("float32"), |
|
}, |
|
"train.mined.tsv": { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"index": datasets.Value("int64"), |
|
"score": datasets.Value("float32"), |
|
}, |
|
} |
|
|
|
class T2RankingConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for T2Ranking.""" |
|
|
|
def __init__(self, splits, **kwargs): |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.splits = splits |
|
|
|
|
|
class T2Ranking(datasets.GeneratorBasedBuilder): |
|
"""The T2Ranking benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
T2RankingConfig( |
|
name="collection", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.train", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.dev", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="queries.train", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="queries.dev", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="queries.test", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.retrieval.train", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.retrieval.dev", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="train.bm25.tsv", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="train.mined.tsv", |
|
splits=['train'], |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(_FEATURES_DICT[self.config.name]), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
split_things = [] |
|
for split_name in self.config.splits: |
|
|
|
split_data_path = _URLS_DICT[self.config.name] |
|
|
|
filepath = dl_manager.download(split_data_path) |
|
|
|
|
|
split_thing = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
} |
|
) |
|
split_things.append(split_thing) |
|
return split_things |
|
|
|
def _generate_examples(self, filepath): |
|
data = pd.read_csv(filepath, sep='\t', quoting=3) |
|
keys = _FEATURES_DICT[self.config.name].keys() |
|
for idx in range(data.shape[0]): |
|
yield idx, {key: data[key][idx] for key in keys} |
|
|