Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
wenhu commited on
Commit
ff1d381
1 Parent(s): 3bd61bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -1
README.md CHANGED
@@ -741,9 +741,42 @@ configs:
741
  data_files:
742
  - split: test
743
  path: Wiki-SS-NQ/test-*
 
 
 
 
 
 
 
 
744
  ---
745
 
 
746
 
 
747
 
748
- ![Leaderboard](leaderboard.jpg)
749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741
  data_files:
742
  - split: test
743
  path: Wiki-SS-NQ/test-*
744
+ license: mit
745
+ language:
746
+ - en
747
+ tags:
748
+ - ranking
749
+ pretty_name: MMEB
750
+ size_categories:
751
+ - 10K<n<100K
752
  ---
753
 
754
+ # Massive Multimodal Embedding Benchmark
755
 
756
+ We compile a large set of evaluation tasks to understand the capabilities of multimodal embedding models. This benchmark covers 4 meta tasks and 36 datasets meticulously selected for evaluation.
757
 
758
+ The dataset is published in our paper [VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks](https://arxiv.org/abs/2410.05160).
759
 
760
+ ## Dataset Usage
761
+ For each dataset, we have 1000 examples for evaluation. Each example contains a query and a set of targets. Both the query and target could be any combination of image and text. The first one in the candidate list is the groundtruth target.
762
+
763
+ ## Statistics
764
+ We show the statistics of all the datasets as follows:
765
+ <img width="900" alt="abs" src="statistics.png">
766
+
767
+ ## Per-dataset Results
768
+ We list the performance of different embedding models in the following:
769
+ <img width="900" alt="abs" src="leaderboard.png">
770
+
771
+ ## Submission
772
+ We will set a formal leaderboard soon. If you want to add your results to the leaderboard, please send email to us at ruimeng@salesforce.com.
773
+
774
+ ## Cite Us
775
+ ```
776
+ @article{jiang2024vlm2vec,
777
+ title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks},
778
+ author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu},
779
+ journal={arXiv preprint arXiv:2410.05160},
780
+ year={2024}
781
+ }
782
+ ```