File size: 2,448 Bytes
8f287d0 8f1d370 8f287d0 7b5b238 8f287d0 7a86057 8f287d0 7a86057 8f287d0 8f1d370 8f287d0 7a86057 8f287d0 7a86057 8f287d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset that includes list of Arabic first names with meaning and origin of most names"""
import csv
import datasets
_CITATION = """\
@software{Al-Fetyani_Maha_Processing_Library_2021,
author = {Al-Fetyani, Mohammad},
month = {11},
title = {{Maha Processing Library}},
url = {https://github.com/TRoboto/Maha},
year = {2021}
}
"""
_DESCRIPTION = """\
List of Arabic first names with meaning and origin of most names
"""
_URL = "https://huggingface.co/datasets/TRoboto/names/raw/main/data/names.tsv"
class Names(datasets.GeneratorBasedBuilder):
"""List of Arabic first names with meaning and origin of most names"""
VERSION = datasets.Version("1.0.1")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"name": datasets.Value("string"),
"description": datasets.Value("string"),
"origin": datasets.Value("string"),
}
),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
name_path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": name_path}
),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f, delimiter="\t")
next(data, None) # skip the headers
for row_id, row in enumerate(data):
name, description, origin = row
yield row_id, {
"name": name,
"description": description,
"origin": origin,
}
|