File size: 2,448 Bytes
8f287d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f1d370
8f287d0
 
 
 
 
7b5b238
8f287d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a86057
8f287d0
 
7a86057
8f287d0
 
 
8f1d370
8f287d0
 
 
 
7a86057
8f287d0
7a86057
 
 
8f287d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset that includes list of Arabic first names with meaning and origin of most names"""


import csv

import datasets

_CITATION = """\
@software{Al-Fetyani_Maha_Processing_Library_2021,
author = {Al-Fetyani, Mohammad},
month = {11},
title = {{Maha Processing Library}},
url = {https://github.com/TRoboto/Maha},
year = {2021}
}
"""

_DESCRIPTION = """\
List of Arabic first names with meaning and origin of most names
"""

_URL = "https://huggingface.co/datasets/TRoboto/names/raw/main/data/names.tsv"


class Names(datasets.GeneratorBasedBuilder):
    """List of Arabic first names with meaning and origin of most names"""

    VERSION = datasets.Version("1.0.1")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "name": datasets.Value("string"),
                    "description": datasets.Value("string"),
                    "origin": datasets.Value("string"),
                }
            ),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        name_path = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": name_path}
            ),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            data = csv.reader(f, delimiter="\t")
            next(data, None)  # skip the headers
            for row_id, row in enumerate(data):
                name, description, origin = row
                yield row_id, {
                    "name": name,
                    "description": description,
                    "origin": origin,
                }