# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """SQUAD-SK: The Slovak Translation of Stanford Question Answering Dataset.""" import json import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) _CITATION = """\ TBD """ _DESCRIPTION = """\ Slovak translation of Standford Question Answering Dataset """ _URL = "https://files.kemt.fei.tuke.sk/corpora/sk-quad/squad-sk-230321.tar.gz" _FILES = { "dev": "squad-sk/dev-230321.json", "train": "squad-sk/train-230321.json", } class SquadSkConfig(datasets.BuilderConfig): """BuilderConfig for SQUAD.""" def __init__(self, **kwargs): """BuilderConfig for SQUAD. Args: **kwargs: keyword arguments forwarded to super. """ super(SquadSkConfig, self).__init__(**kwargs) class SquadSk(datasets.GeneratorBasedBuilder): """Squad SK : Slovak machine translated SQUAD 2.0 """ BUILDER_CONFIGS = [ SquadSkConfig( name="plain_text", version=datasets.Version("1.1.1", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://rajpurkar.github.io/SQuAD-explorer/", citation=_CITATION, task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): downloaded_dir = dl_manager.download_and_extract(_URL) print(downloaded_dir) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_dir + "/" + _FILES["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_dir+ "/" + _FILES["dev"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: squad = json.load(f) for article in squad["data"]: title = article.get("title", "") for paragraph in article["paragraphs"]: context = paragraph["context"] # do not strip leading blank spaces GH-2585 for qa in paragraph["qas"]: answer_starts = [answer["answer_start"] for answer in qa["answers"]] assert len(qa["question"]) > 0 #if len(answer_starts) == 0: # continue answers = [answer["text"] for answer in qa["answers"]] assert len(answer_starts) == len(answers) # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield key, { "title": title, "context": context, "question": qa["question"], "id": qa["id"], "answers": { "answer_start": answer_starts, "text": answers, }, } key += 1