|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Only Connect Wall (OCW) dataset""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{Naeini2023LargeLM, |
|
title = {Large Language Models are Fixated by Red Herrings: Exploring Creative Problem Solving and Einstellung Effect using the Only Connect Wall Dataset}, |
|
author = {Saeid Alavi Naeini and Raeid Saqur and Mozhgan Saeidi and John Giorgi and Babak Taati}, |
|
year = 2023, |
|
journal = {ArXiv}, |
|
volume = {abs/2306.11167}, |
|
url = {https://api.semanticscholar.org/CorpusID:259203717} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Only Connect Wall (OCW) dataset contains 618 "Connecting Walls" from the Round 3: Connecting Wall segment of the Only Connect quiz show, collected from 15 seasons' worth of episodes. Each wall contains the ground-truth groups and connections as well as recorded human performance. |
|
""" |
|
|
|
_HOMEPAGE_URL = "https://github.com/TaatiTeam/OCW/" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_BASE_URL = "https://www.cs.toronto.edu/~taati/OCW/" |
|
_URLS = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"ocw": _BASE_URL + "OCW.tar.gz", |
|
"ocw_randomized": _BASE_URL + "OCW_randomized.tar.gz", |
|
"ocw_wordnet": _BASE_URL + "OCW_wordnet.tar.gz" |
|
|
|
} |
|
|
|
|
|
class OCW(datasets.GeneratorBasedBuilder): |
|
"""OCW dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="ocw", version=VERSION, |
|
description="main OCW dataset"), |
|
datasets.BuilderConfig(name="ocw_randomized", version=VERSION, |
|
description="Easy OCW dataset with randomized groups in each wall"), |
|
datasets.BuilderConfig(name="ocw_wordnet", version=VERSION, |
|
description="Easy OCW dataset with wordnet synonyms replaced with original clues") |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ocw" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
|
|
|
|
|
|
"wall_id": datasets.Value("string"), |
|
"season": datasets.Value("int32"), |
|
"episode": datasets.Value("int32"), |
|
"words": datasets.features.Sequence(feature=datasets.Value("string")), |
|
"gt_connections": datasets.features.Sequence(feature=datasets.Value("string")), |
|
"group_1": |
|
{ |
|
"group_id": datasets.Value("string"), |
|
"gt_words":datasets.features.Sequence(feature=datasets.Value("string")), |
|
"gt_connection": datasets.Value("string"), |
|
"human_performance": |
|
{ |
|
"grouping": datasets.Value("int32"), |
|
"connection": datasets.Value("int32") |
|
} |
|
}, |
|
"group_2": |
|
{ |
|
"group_id": datasets.Value("string"), |
|
"gt_words": datasets.features.Sequence(feature=datasets.Value("string")), |
|
"gt_connection": datasets.Value("string"), |
|
"human_performance": |
|
{ |
|
"grouping": datasets.Value("int32"), |
|
"connection": datasets.Value("int32") |
|
} |
|
}, |
|
"group_3": |
|
{ |
|
"group_id": datasets.Value("string"), |
|
"gt_words": datasets.features.Sequence(feature=datasets.Value("string")), |
|
"gt_connection": datasets.Value("string"), |
|
"human_performance": |
|
{ |
|
"grouping": datasets.Value("int32"), |
|
"connection": datasets.Value("int32") |
|
} |
|
}, |
|
"group_4": |
|
{ |
|
"group_id": datasets.Value("string"), |
|
"gt_words": datasets.features.Sequence(feature=datasets.Value("string")), |
|
"gt_connection": datasets.Value("string"), |
|
"human_performance": |
|
{ |
|
"grouping": datasets.Value("int32"), |
|
"connection": datasets.Value("int32") |
|
} |
|
}, |
|
|
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features= features, |
|
|
|
homepage=_HOMEPAGE_URL, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
|
|
supervised_keys=None |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = _URLS[self.config.name] |
|
if self.config.name == "ocw_randomized": |
|
url = [url, _URLS[self.DEFAULT_CONFIG_NAME]] |
|
path = dl_manager.download_and_extract(url) |
|
if self.config.name == self.DEFAULT_CONFIG_NAME: |
|
dir = 'dataset' |
|
train_filepath = os.path.join(path, dir, 'train.json') |
|
val_filepath = os.path.join(path, dir, 'validation.json') |
|
test_filepath = os.path.join(path, dir, 'test.json') |
|
elif self.config.name == "ocw_randomized": |
|
|
|
dir = 'OCW_randomized' |
|
dir2 = 'dataset' |
|
train_filepath = os.path.join(path[1], dir2, 'train.json') |
|
val_filepath = os.path.join(path[1], dir2, 'validation.json') |
|
test_filepath = os.path.join(path[0], dir, 'easy_test.json') |
|
else: |
|
dir = 'OCW_wordnet' |
|
train_filepath = os.path.join(path, dir, 'easy_train_wordnet.json') |
|
val_filepath = os.path.join(path, dir, 'easy_validation_wordnet.json') |
|
test_filepath = os.path.join(path, dir, 'easy_test_wordnet.json') |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_filepath}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_filepath}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_filepath}), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
ocw = json.load(f) |
|
for data in ocw["dataset"]: |
|
wall_id = data.get("wall_id") |
|
season = data.get("season") |
|
|
|
|
|
|
|
|
|
episode = data.get("episode") |
|
words = data.get("words") |
|
gt_connections = data.get("gt_connections") |
|
group_1 = data['groups']['group_1'] |
|
group_1_human_performance = group_1['human_performance'] |
|
group_2 = data['groups']['group_2'] |
|
group_2_human_performance = group_2['human_performance'] |
|
group_3 = data['groups']['group_3'] |
|
group_3_human_performance = group_3['human_performance'] |
|
group_4 = data['groups']['group_4'] |
|
group_4_human_performance = group_4['human_performance'] |
|
yield key, { |
|
|
|
|
|
|
|
"wall_id": wall_id, |
|
"season": season, |
|
"episode": episode, |
|
"words": words, |
|
"gt_connections": gt_connections, |
|
"group_1": { |
|
"group_id": group_1.get("group_id"), |
|
"gt_words": group_1.get("gt_words"), |
|
"gt_connection": group_1.get("gt_connection"), |
|
"human_performance": { |
|
"grouping": group_1_human_performance.get("grouping"), |
|
"connection": group_1_human_performance.get("connection") |
|
} |
|
}, |
|
"group_2": { |
|
"group_id": group_2.get("group_id"), |
|
"gt_words": group_2.get("gt_words"), |
|
"gt_connection": group_2.get("gt_connection"), |
|
"human_performance": { |
|
"grouping": group_2_human_performance.get("grouping"), |
|
"connection": group_2_human_performance.get("connection") |
|
} |
|
}, |
|
"group_3": { |
|
"group_id": group_3.get("group_id"), |
|
"gt_words": group_3.get("gt_words"), |
|
"gt_connection": group_3.get("gt_connection"), |
|
"human_performance": { |
|
"grouping": group_3_human_performance.get("grouping"), |
|
"connection": group_3_human_performance.get("connection") |
|
} |
|
}, |
|
"group_4": { |
|
"group_id": group_4.get("group_id"), |
|
"gt_words": group_4.get("gt_words"), |
|
"gt_connection": group_4.get("gt_connection"), |
|
"human_performance": { |
|
"grouping": group_4_human_performance.get("grouping"), |
|
"connection": group_4_human_performance.get("connection") |
|
} |
|
}, |
|
} |
|
key += 1 |