File size: 11,157 Bytes
a2f1188
 
83373f6
921ed28
 
 
a2f1188
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7753a
a2f1188
3c7753a
a2f1188
3c7753a
a2f1188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a2814
3c757d7
 
 
42a2814
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7753a
42a2814
3c7753a
42a2814
3c7753a
42a2814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83373f6
3c757d7
 
 
83373f6
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7753a
83373f6
3c7753a
83373f6
3c7753a
83373f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a69ef
3c757d7
 
 
e3a69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7753a
e3a69ef
3c7753a
e3a69ef
3c7753a
e3a69ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f1188
 
 
 
 
42a2814
 
 
 
83373f6
 
 
 
e3a69ef
 
 
 
36bb20b
3c757d7
 
 
3eb342c
 
36bb20b
 
 
 
 
be38a5d
 
 
 
 
 
36bb20b
 
a2f1188
be38a5d
 
 
 
 
 
ff427ec
be38a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13bbba8
 
 
 
 
e1c383b
 
 
13bbba8
 
e1c383b
13bbba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c19018d
 
 
 
be38a5d
2b61b98
 
 
 
 
 
 
 
 
 
be38a5d
 
 
 
 
 
 
417b13e
be38a5d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
---
dataset_info:
- config_name: TV-2021.02-Neutral
  description: Single german male speaker, neutral speech, very clear and precise, but low in speech flow.
  homepage: https://www.Thorsten-Voice.de
  license: CC0
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
  - name: id
    dtype: string
  - name: subset
    dtype: string
  - name: style
    dtype: string
  - name: text
    dtype: string
  - name: samplerate
    dtype: int32
  - name: durationSeconds
    dtype: float16
  - name: charsPerSecond
    dtype: float16
  - name: recording_year-month
    dtype: string
  - name: microphone
    dtype: string
  - name: speaker
    dtype: string
  - name: language
    dtype: string
  - name: comment
    dtype: string
  splits:
  - name: train
    num_bytes: 7290955038.594
    num_examples: 22671
  download_size: 6955484390
  dataset_size: 7290955038.594
- config_name: TV-2021.06-Emotional
  description: Single german male speaker, all same phrases recorded in following emotions - Disgusted, Angry, Amused, Surprised, Sleepy, Drunk, Whispering
  homepage: https://www.Thorsten-Voice.de
  license: CC0
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
  - name: id
    dtype: string
  - name: subset
    dtype: string
  - name: style
    dtype: string
  - name: text
    dtype: string
  - name: samplerate
    dtype: int32
  - name: durationSeconds
    dtype: float16
  - name: charsPerSecond
    dtype: float16
  - name: recording_year-month
    dtype: string
  - name: microphone
    dtype: string
  - name: speaker
    dtype: string
  - name: language
    dtype: string
  - name: comment
    dtype: string
  splits:
  - name: train
    num_bytes: 793443429.88
    num_examples: 2020
  download_size: 748062212
  dataset_size: 793443429.88
- config_name: TV-2022.10-Neutral
  description: Single german male speaker, neutral speech, very clear, high class quality, natural speech flow
  homepage: https://www.Thorsten-Voice.de
  license: CC0
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
  - name: id
    dtype: string
  - name: subset
    dtype: string
  - name: style
    dtype: string
  - name: text
    dtype: string
  - name: samplerate
    dtype: int32
  - name: durationSeconds
    dtype: float16
  - name: charsPerSecond
    dtype: float16
  - name: recording_year-month
    dtype: string
  - name: microphone
    dtype: string
  - name: speaker
    dtype: string
  - name: language
    dtype: string
  - name: comment
    dtype: string
  splits:
  - name: train
    num_bytes: 3559397446.61
    num_examples: 12451
  download_size: 3166262433
  dataset_size: 3559397446.61
- config_name: TV-2023.09-Hessisch
  description: Single german male speaker, high class quality, natural speech flow, recorded in Hessisch and german dialect spoken in the middle of germany
  homepage: https://www.Thorsten-Voice.de
  license: CC0
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
  - name: id
    dtype: string
  - name: subset
    dtype: string
  - name: style
    dtype: string
  - name: text
    dtype: string
  - name: samplerate
    dtype: int32
  - name: durationSeconds
    dtype: float16
  - name: charsPerSecond
    dtype: float16
  - name: recording_year-month
    dtype: string
  - name: microphone
    dtype: string
  - name: speaker
    dtype: string
  - name: language
    dtype: string
  - name: comment
    dtype: string
  splits:
  - name: train
    num_bytes: 689946875.552
    num_examples: 2106
  download_size: 627569003
  dataset_size: 689946875.552
configs:
- config_name: TV-2021.02-Neutral
  data_files:
  - split: train
    path: TV-2021.02-Neutral/train-*
- config_name: TV-2021.06-Emotional
  data_files:
  - split: train
    path: TV-2021.06-Emotional/train-*
- config_name: TV-2022.10-Neutral
  data_files:
  - split: train
    path: TV-2022.10-Neutral/train-*
- config_name: TV-2023.09-Hessisch
  data_files:
  - split: train
    path: TV-2023.09-Hessisch/train-*
- config_name: all
  description: Meta config or subset containing all four Thorsten-Voice datasets
  homepage: https://www.Thorsten-Voice.de
  license: CC0
  data_files:
  - split: train
    path:
    - TV-2021.02-Neutral/train-*
    - TV-2023.09-Hessisch/train-*
    - TV-2022.10-Neutral/train-*
    - TV-2021.06-Emotional/train-*
license: cc0-1.0
task_categories:
- text-to-speech
- text-to-audio
language:
- de
size_categories:
- 10K<n<100K
---
# The "Thorsten-Voice" dataset
This truly open source (CC0 license) german (🇩🇪) voice dataset contains about **40 hours of transcribed voice recordings** by Thorsten Müller, 
a single male, native speaker in **over 38.000 wave files**.

* Mono
* Samplerate: 44.100Hz
* Trimmed silence at begin/end
* Denoised
* Normalized to -24dB

# Disclaimer
```"Please keep in mind, I am not a professional speaker, just an open source speech technology enthusiast who donates his voice. I contribute my personal voice as a person believing in a world where all people are equal. No matter of gender, sexual orientation, religion, skin color and geocoordinates of birth location. A global world where everybody is warmly welcome on any place on this planet and open and free knowledge and education is available to everyone." (Thorsten Müller)```

## Features (attributes)
This dataset contains following attributes.

* **audio**: Actual audio file content. Is playable directly in the browser.
* **id**: Unique identifier for each file. Format is "RecordingSessionGUID---WaveGUID". Adding a ".wav" to id will be the filename of recording.
* **subset**: Name of recording session (details below).
* **style**: Can be "neutral", "hessisch" (a german dialect) or a specific emotion (details below).
* **text**: The recorded text in this wave file.
* **samplerate**: The samplerate (44.100Hz) for the recording.
* **durationSeconds**: Duration for audio file in seconds (rounded to 2).
* **charsPerSecond**: The recording speed in characters spoken per second.
* **recording_year-month**: In which month has text been recorded.
* **microphone**: Some recordings has been made with a bad USB headset and some with a good Rode Podcaster microphone.
* **speaker**: Guude 👋, it's me - Thorsten 😊.
* **language**: All recordings are done in german language.
* **comment**: Some (emotional) recordings might have cut off endings. This is written as comment on affected files.

## Subsets & styles

### Subset: TV-2021.02-Neutral
This subset contains about 22.000 recordings in a **neutral style**. The recording quality is mixed. Bad USB microphone
or good Rode Podcaster microphone and used a recording chamber. See microphone feature for information. The pronounciation is very clear and slow.
Every word is pronounced very well, but the speech flow is less natural because of very clear recording.
*This subset (in 22kHz samplerate) is also available on Zenodo under [DOI 10.5281/zenodo.5525342](https://doi.org/10.5281/zenodo.5525342)*

### Subset: TV-2022.10-Neutral
This subset contains about 12.000 recordings in a **neutral style**. All recordings where done using a good Rode Podcaster microphone and
a recording chamber. The speech flow is very natural.
*This subset (in 22kHz samplerate) is also available on Zenodo under [DOI 10.5281/zenodo.7265581](https://doi.org/10.5281/zenodo.7265581)*

### Subset: TV-2021.06-Emotional
This subset contains about 2.000 recordings in an **emotional style**. The recorded phrases are for all emotions identical but are pronounced in
following different emotions. Some recordings might be cut off too early.
*This subset (in 22kHz samplerate) is also available on Zenodo under [DOI 10.5281/zenodo.5525023](https://doi.org/10.5281/zenodo.5525023)*

* neutral
* surprised (*style: surprised | überrascht*)
* disgusted (*style: disgusted | angewidert*)
* drunk, taken sober (*style: drunk | angetrunken*)
* angry (*style: angry | wütend*)
* amused (*style: amused | amüsiert*)
* whisper (style: *whisper | flüstern*)
* sleepy (style: *sleepy | schläfrig*)

### Subset: TV-2023.09-Hessisch
This subset contains about 2.000 recordings in a **Hessisch** (Guude aka. "Hi" 👋). Hessisch is a regional dialect spoken in the state of "Hessen"
in the center region of germany. All recordings where done using a good Rode Podcaster microphone and a recording chamber. The speech flow is very natural.
*This subset (in 22kHz samplerate) is also available on Zenodo under [DOI 10.5281/zenodo.10511260](https://doi.org/10.5281/zenodo.10511260)*

# Use the dataset

## API Call
You can query the dataset using HuggingFace API with SQL query syntax

```sql
SELECT * FROM tv_202106_emotional WHERE "style" = 'angry | wütend' LIMIT 10;
```

## Python Code
```python
from datasets import load_dataset
from datasets import load_dataset_builder
from datasets import get_dataset_config_names

# Get a list of available configs/subsets of Thorsten-Voice dataset
configs_subsets = get_dataset_config_names("Thorsten-Voice/TV-44kHz-Full")
print(configs_subsets)
>>> ['TV-2021.02-Neutral', 'TV-2021.06-Emotional', 'TV-2022.10-Neutral', 'TV-2023.09-Hessisch', 'all']

# Get some dataset information
ds_builder = load_dataset_builder("Thorsten-Voice/TV-44kHz-Full", "TV-2022.10-Neutral")
print("Desciption: " + ds_builder.info.description)
print("Homepage: " + ds_builder.info.homepage)
print("License: " + ds_builder.info.license)
>>> Desciption: Single german male speaker, neutral speech, very clear, high class quality, natural speech flow
>>> Homepage: https://www.Thorsten-Voice.de
>>> License: CC0

# Load "Hessisch" subset
ds = load_dataset("Thorsten-Voice/TV-44kHz-Full", "TV-2023.09-Hessisch", split="train")

# Return first row of "Hessisch" subset
print(ds[0])

# Get first three rows, limited to "text" column
print(ds[:3]["text"])
>>> ['Woran kannst du erkennen, ob etwas qualitativ gut oder schlecht ist.', 'Diese heiße Schokolade ist nichts für Kinder und perfekt, um am Wochenende oder nach einem langen Tag zu entspannen.', 'Aus den Untersuchungen kam heraus, dass diese Kinder aufmerksamer waren, emotional stabiler und ausgeglichener im Vergleich zu den Kindern die später ins Bett gingen.']
```

# Verify dataset integrity
* https://datasets-server.huggingface.co/is-valid?dataset=Thorsten-Voice/TV-44kHz-Full
* https://datasets-server.huggingface.co/statistics?dataset=Thorsten-Voice/TV-44kHz-Full&config=TV-2021.02-Neutral&split=train

# DOI / cite
```
@misc {thorsten_müller_2024,
	author       = { {Thorsten Müller} },
	title        = { TV-44kHz-Full (Revision ff427ec) },
	year         = 2024,
	url          = { https://huggingface.co/datasets/Thorsten-Voice/TV-44kHz-Full },
	doi          = { 10.57967/hf/3290 },
	publisher    = { Hugging Face }
}
```

# Thanks
Thanks to all amazing open source communities around the globe for bringing the world forward. Of course, thanks to Dominik Kreutz for your
great support over the years 🤗.

# Links
* https://www.Thorsten-Voice.de
* https://www.youtube.com/@ThorstenMueller
* https://github.com/thorstenMueller/Thorsten-Voice
* https://huggingface.co/spaces/Thorsten-Voice/TTS