File size: 2,100 Bytes
e238a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6cbb0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e238a0a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: gender
    dtype: string
  - name: speaker_id
    dtype: string
  - name: transcription
    dtype: string
  splits:
  - name: train
    num_bytes: 198995934.614
    num_examples: 2006
  download_size: 179378562
  dataset_size: 198995934.614
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---
# Corpus

This dataset is built from Magicdata [ASR-CZDIACSC: A CHINESE ZHENGZHOU DIALECT CONVERSATIONAL SPEECH CORPUS](https://magichub.com/datasets/zhengzhou-dialect-conversational-speech-corpus/)

This corpus is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License](http://creativecommons.org/licenses/by-nc-nd/4.0/). Please refer to the license for further information.

Modifications: The audio is split in sentences based on the time span on the transcription file. Sentences that span less than 1 second is discarded. Topics of conversation is removed.

# Usage

To load this dataset, use

```python
from datasets import load_dataset
dialect_corpus = load_dataset("TingChen-ppmc/Zhengzhou_Dialect_Conversational_Speech_Corpus")
```

This dataset only has train split. To split out a test split, use

```python
from datasets import load_dataset
train_split = load_dataset("TingChen-ppmc/Zhengzhou_Dialect_Conversational_Speech_Corpus", split="train")
# where test=0.5 denotes 0.5 of the dataset will be split to test split
corpus = train_split.train_test_split(test=0.5)
```

A sample data would be

```python
# note this data is from the Nanchang Dialect corpus, the data format is shared
{'audio': 
	{'path': 'A0001_S001_0_G0001_0.WAV',
  	 'array': array([-0.00030518, -0.00039673, 
                     -0.00036621, ..., 	-0.00064087,
         			 -0.00015259, -0.00042725]),
  	 'sampling_rate': 16000},
 'gender': '女',
 'speaker_id': 'G0001',
 'transcription': '北京爱数智慧语音采集'
}
```



[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)