File size: 5,682 Bytes
6303c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a4880a
6303c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from xml.etree import ElementTree as ET

import datasets

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {electric-scooters-tracking},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset contains frames extracted from self-checkout videos, specifically focusing
on **tracking products**. The tracking data provides the **trajectory of each product**,
allowing for analysis of customer movement and behavior throughout the transaction.
The dataset assists in detecting shoplifting and fraud, enhancing efficiency, accuracy,
and customer experience. It facilitates the development of computer vision models for
*object detection, tracking, and recognition* within a self-checkout environment.
"""
_NAME = "electric-scooters-tracking"

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = ""

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"

_LABELS = ["electric_scooter"]


class ElectricScootersTracking(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"),
        datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"),
        datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"),
    ]

    DEFAULT_CONFIG_NAME = "video_01"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "name": datasets.Value("string"),
                    "image": datasets.Image(),
                    "mask": datasets.Image(),
                    "shapes": datasets.Sequence(
                        {
                            "track_id": datasets.Value("uint32"),
                            "label": datasets.ClassLabel(
                                num_classes=len(_LABELS),
                                names=_LABELS,
                            ),
                            "type": datasets.Value("string"),
                            "points": datasets.Sequence(
                                datasets.Sequence(
                                    datasets.Value("float"),
                                ),
                            ),
                            "rotation": datasets.Value("float"),
                            "occluded": datasets.Value("uint8"),
                            "attributes": datasets.Sequence(
                                {
                                    "name": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data = dl_manager.download_and_extract(self.config.data_dir)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data": data,
                },
            ),
        ]

    @staticmethod
    def extract_shapes_from_tracks(
        root: ET.Element, file: str, index: int
    ) -> ET.Element:
        img = ET.Element("image")
        img.set("name", file)
        img.set("id", str(index))
        for track in root.iter("track"):
            shape = track.find(f".//*[@frame='{index}']")
            shape.set("label", track.get("label"))
            shape.set("track_id", track.get("id"))
            img.append(shape)

        return img

    @staticmethod
    def parse_shape(shape: ET.Element) -> dict:
        label = shape.get("label")
        track_id = shape.get("track_id")
        shape_type = shape.tag
        rotation = shape.get("rotation", 0.0)
        occluded = shape.get("occluded", 0)

        points = None

        if shape_type == "points":
            points = tuple(map(float, shape.get("points").split(",")))

        elif shape_type == "box":
            points = [
                (float(shape.get("xtl")), float(shape.get("ytl"))),
                (float(shape.get("xbr")), float(shape.get("ybr"))),
            ]

        elif shape_type == "polygon":
            points = [
                tuple(map(float, point.split(",")))
                for point in shape.get("points").split(";")
            ]

        attributes = []

        for attr in shape:
            attr_name = attr.get("name")
            attr_text = attr.text
            attributes.append({"name": attr_name, "text": attr_text})

        shape_data = {
            "label": label,
            "track_id": track_id,
            "type": shape_type,
            "points": points,
            "rotation": rotation,
            "occluded": occluded,
            "attributes": attributes,
        }

        return shape_data

    def _generate_examples(self, data):
        tree = ET.parse(f"{data}/annotations.xml")
        root = tree.getroot()

        for idx, file in enumerate(sorted(os.listdir(f"{data}/images"))):
            img = self.extract_shapes_from_tracks(root, file, idx)

            image_id = img.get("id")
            name = img.get("name")
            shapes = [self.parse_shape(shape) for shape in img]

            yield idx, {
                "id": image_id,
                "name": name,
                "image": f"{data}/images/{file}",
                "mask": f"{data}/boxes/{file}",
                "shapes": shapes,
            }