File size: 5,682 Bytes
6303c85 7a4880a 6303c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
from xml.etree import ElementTree as ET
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {electric-scooters-tracking},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset contains frames extracted from self-checkout videos, specifically focusing
on **tracking products**. The tracking data provides the **trajectory of each product**,
allowing for analysis of customer movement and behavior throughout the transaction.
The dataset assists in detecting shoplifting and fraud, enhancing efficiency, accuracy,
and customer experience. It facilitates the development of computer vision models for
*object detection, tracking, and recognition* within a self-checkout environment.
"""
_NAME = "electric-scooters-tracking"
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = ""
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
_LABELS = ["electric_scooter"]
class ElectricScootersTracking(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"),
datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"),
datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"),
]
DEFAULT_CONFIG_NAME = "video_01"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"name": datasets.Value("string"),
"image": datasets.Image(),
"mask": datasets.Image(),
"shapes": datasets.Sequence(
{
"track_id": datasets.Value("uint32"),
"label": datasets.ClassLabel(
num_classes=len(_LABELS),
names=_LABELS,
),
"type": datasets.Value("string"),
"points": datasets.Sequence(
datasets.Sequence(
datasets.Value("float"),
),
),
"rotation": datasets.Value("float"),
"occluded": datasets.Value("uint8"),
"attributes": datasets.Sequence(
{
"name": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data = dl_manager.download_and_extract(self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": data,
},
),
]
@staticmethod
def extract_shapes_from_tracks(
root: ET.Element, file: str, index: int
) -> ET.Element:
img = ET.Element("image")
img.set("name", file)
img.set("id", str(index))
for track in root.iter("track"):
shape = track.find(f".//*[@frame='{index}']")
shape.set("label", track.get("label"))
shape.set("track_id", track.get("id"))
img.append(shape)
return img
@staticmethod
def parse_shape(shape: ET.Element) -> dict:
label = shape.get("label")
track_id = shape.get("track_id")
shape_type = shape.tag
rotation = shape.get("rotation", 0.0)
occluded = shape.get("occluded", 0)
points = None
if shape_type == "points":
points = tuple(map(float, shape.get("points").split(",")))
elif shape_type == "box":
points = [
(float(shape.get("xtl")), float(shape.get("ytl"))),
(float(shape.get("xbr")), float(shape.get("ybr"))),
]
elif shape_type == "polygon":
points = [
tuple(map(float, point.split(",")))
for point in shape.get("points").split(";")
]
attributes = []
for attr in shape:
attr_name = attr.get("name")
attr_text = attr.text
attributes.append({"name": attr_name, "text": attr_text})
shape_data = {
"label": label,
"track_id": track_id,
"type": shape_type,
"points": points,
"rotation": rotation,
"occluded": occluded,
"attributes": attributes,
}
return shape_data
def _generate_examples(self, data):
tree = ET.parse(f"{data}/annotations.xml")
root = tree.getroot()
for idx, file in enumerate(sorted(os.listdir(f"{data}/images"))):
img = self.extract_shapes_from_tracks(root, file, idx)
image_id = img.get("id")
name = img.get("name")
shapes = [self.parse_shape(shape) for shape in img]
yield idx, {
"id": image_id,
"name": name,
"image": f"{data}/images/{file}",
"mask": f"{data}/boxes/{file}",
"shapes": shapes,
}
|