import os from xml.etree import ElementTree as ET import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {electric-scooters-tracking}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset contains frames extracted from self-checkout videos, specifically focusing on **tracking products**. The tracking data provides the **trajectory of each product**, allowing for analysis of customer movement and behavior throughout the transaction. The dataset assists in detecting shoplifting and fraud, enhancing efficiency, accuracy, and customer experience. It facilitates the development of computer vision models for *object detection, tracking, and recognition* within a self-checkout environment. """ _NAME = "electric-scooters-tracking" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" _LABELS = ["electric_scooter"] class ElectricScootersTracking(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"), datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"), datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"), ] DEFAULT_CONFIG_NAME = "video_01" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "name": datasets.Value("string"), "image": datasets.Image(), "mask": datasets.Image(), "shapes": datasets.Sequence( { "track_id": datasets.Value("uint32"), "label": datasets.ClassLabel( num_classes=len(_LABELS), names=_LABELS, ), "type": datasets.Value("string"), "points": datasets.Sequence( datasets.Sequence( datasets.Value("float"), ), ), "rotation": datasets.Value("float"), "occluded": datasets.Value("uint8"), "attributes": datasets.Sequence( { "name": datasets.Value("string"), "text": datasets.Value("string"), } ), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): data = dl_manager.download_and_extract(self.config.data_dir) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": data, }, ), ] @staticmethod def extract_shapes_from_tracks( root: ET.Element, file: str, index: int ) -> ET.Element: img = ET.Element("image") img.set("name", file) img.set("id", str(index)) for track in root.iter("track"): shape = track.find(f".//*[@frame='{index}']") shape.set("label", track.get("label")) shape.set("track_id", track.get("id")) img.append(shape) return img @staticmethod def parse_shape(shape: ET.Element) -> dict: label = shape.get("label") track_id = shape.get("track_id") shape_type = shape.tag rotation = shape.get("rotation", 0.0) occluded = shape.get("occluded", 0) points = None if shape_type == "points": points = tuple(map(float, shape.get("points").split(","))) elif shape_type == "box": points = [ (float(shape.get("xtl")), float(shape.get("ytl"))), (float(shape.get("xbr")), float(shape.get("ybr"))), ] elif shape_type == "polygon": points = [ tuple(map(float, point.split(","))) for point in shape.get("points").split(";") ] attributes = [] for attr in shape: attr_name = attr.get("name") attr_text = attr.text attributes.append({"name": attr_name, "text": attr_text}) shape_data = { "label": label, "track_id": track_id, "type": shape_type, "points": points, "rotation": rotation, "occluded": occluded, "attributes": attributes, } return shape_data def _generate_examples(self, data): tree = ET.parse(f"{data}/annotations.xml") root = tree.getroot() for idx, file in enumerate(sorted(os.listdir(f"{data}/images"))): img = self.extract_shapes_from_tracks(root, file, idx) image_id = img.get("id") name = img.get("name") shapes = [self.parse_shape(shape) for shape in img] yield idx, { "id": image_id, "name": name, "image": f"{data}/images/{file}", "mask": f"{data}/boxes/{file}", "shapes": shapes, }