|
from itertools import count |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {presentation-attack-detection-2d-dataset}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of photos of individuals and videos of him/her wearing printed 2D |
|
mask with cut-out holes for eyes. Videos are filmed in different lightning conditions |
|
and in different places (*indoors, outdoors*), a person moves his/her head left, right, |
|
up and down. Each video in the dataset has an approximate duration of 15-17 seconds. |
|
""" |
|
_NAME = "presentation-attack-detection-2d-dataset" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class PresentationAttackDetection2dDataset(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"photo": datasets.Image(), |
|
"video": datasets.Value("string"), |
|
"worker_id": datasets.Value("string"), |
|
"set_id": datasets.Value("string"), |
|
"age": datasets.Value("int8"), |
|
"country": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
attacks = dl_manager.download(f"{_DATA}attacks.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
attacks = dl_manager.iter_archive(attacks) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"attacks": attacks, "annotations": annotations}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, attacks, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=",") |
|
for idx, (image_path, image) in enumerate(attacks): |
|
if image_path.endswith("jpg"): |
|
yield idx, { |
|
"photo": {"path": image_path, "bytes": image.read()}, |
|
"video": annotations_df.loc[ |
|
annotations_df["image"] == image_path |
|
]["video"].values[0], |
|
"worker_id": annotations_df.loc[ |
|
annotations_df["image"] == image_path |
|
]["worker_id"].values[0], |
|
"set_id": annotations_df.loc[ |
|
annotations_df["image"] == image_path |
|
]["set_id"].values[0], |
|
"age": annotations_df.loc[ |
|
annotations_df["image"] == image_path |
|
]["age"].values[0], |
|
"country": annotations_df.loc[ |
|
annotations_df["image"] == image_path |
|
]["country"].values[0], |
|
"gender": annotations_df.loc[ |
|
annotations_df["image"] == image_path |
|
]["gender"].values[0], |
|
} |
|
|