from itertools import count import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {presentation-attack-detection-2d-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of photos of individuals and videos of him/her wearing printed 2D mask with cut-out holes for eyes. Videos are filmed in different lightning conditions and in different places (*indoors, outdoors*), a person moves his/her head left, right, up and down. Each video in the dataset has an approximate duration of 15-17 seconds. """ _NAME = "presentation-attack-detection-2d-dataset" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class PresentationAttackDetection2dDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "photo": datasets.Image(), "video": datasets.Value("string"), "worker_id": datasets.Value("string"), "set_id": datasets.Value("string"), "age": datasets.Value("int8"), "country": datasets.Value("string"), "gender": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): attacks = dl_manager.download(f"{_DATA}attacks.tar.gz") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") attacks = dl_manager.iter_archive(attacks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"attacks": attacks, "annotations": annotations}, ), ] def _generate_examples(self, attacks, annotations): annotations_df = pd.read_csv(annotations, sep=",") for idx, (image_path, image) in enumerate(attacks): if image_path.endswith("jpg"): yield idx, { "photo": {"path": image_path, "bytes": image.read()}, "video": annotations_df.loc[ annotations_df["image"] == image_path ]["video"].values[0], "worker_id": annotations_df.loc[ annotations_df["image"] == image_path ]["worker_id"].values[0], "set_id": annotations_df.loc[ annotations_df["image"] == image_path ]["set_id"].values[0], "age": annotations_df.loc[ annotations_df["image"] == image_path ]["age"].values[0], "country": annotations_df.loc[ annotations_df["image"] == image_path ]["country"].values[0], "gender": annotations_df.loc[ annotations_df["image"] == image_path ]["gender"].values[0], }