File size: 5,375 Bytes
cc2d1df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6519e41
 
 
cc2d1df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6519e41
 
cc2d1df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from xml.etree import ElementTree as ET

import datasets
import pandas as pd

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {race-numbers-detection-and-ocr},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of photos of runners, participating in various races. Each photo
captures a runner wearing a race number on their attire.
The dataset provides **bounding boxes** annotations indicating the location of the race
number in each photo and includes corresponding OCR annotations, where the digit
sequences on the race numbers are transcribed.
This dataset combines the domains of sports, computer vision, and OCR technology,
providing a valuable resource for advancing the field of race number detection and OCR
in the context of athletic events.
"""
_NAME = "race-numbers-detection-and-ocr"

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = ""

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"

_LABELS = ["number"]


class BotoxInjectionsBeforeAndAfter(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "name": datasets.Value("string"),
                    "image": datasets.Image(),
                    "mask": datasets.Image(),
                    "width": datasets.Value("uint16"),
                    "height": datasets.Value("uint16"),
                    "shapes": datasets.Sequence(
                        {
                            "label": datasets.ClassLabel(
                                num_classes=len(_LABELS),
                                names=_LABELS,
                            ),
                            "type": datasets.Value("string"),
                            "points": datasets.Sequence(
                                datasets.Sequence(
                                    datasets.Value("float"),
                                ),
                            ),
                            "rotation": datasets.Value("float"),
                            "attributes": datasets.Sequence(
                                {
                                    "name": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        images = dl_manager.download(f"{_DATA}images.tar.gz")
        masks = dl_manager.download(f"{_DATA}boxes.tar.gz")
        annotations = dl_manager.download(f"{_DATA}annotations.xml")
        images = dl_manager.iter_archive(images)
        masks = dl_manager.iter_archive(masks)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": images,
                    "masks": masks,
                    "annotations": annotations,
                },
            ),
        ]

    @staticmethod
    def parse_shape(shape: ET.Element) -> dict:
        label = shape.get("label")
        shape_type = shape.tag
        rotation = shape.get("rotation", 0.0)

        points = None

        if shape_type == "points":
            points = tuple(map(float, shape.get("points").split(",")))

        elif shape_type == "box":
            points = [
                (float(shape.get("xtl")), float(shape.get("ytl"))),
                (float(shape.get("xbr")), float(shape.get("ybr"))),
            ]

        elif shape_type == "polygon":
            points = [
                tuple(map(float, point.split(",")))
                for point in shape.get("points").split(";")
            ]

        attributes = []

        for attr in shape:
            attr_name = attr.get("name")
            attr_text = attr.text
            attributes.append({"name": attr_name, "text": attr_text})

        shape_data = {
            "label": label,
            "type": shape_type,
            "points": points,
            "rotation": rotation,
            "attributes": attributes,
        }

        return shape_data

    def _generate_examples(self, images, masks, annotations):
        tree = ET.parse(annotations)
        root = tree.getroot()

        for idx, (
            (image_path, image),
            (mask_path, mask),
        ) in enumerate(zip(images, masks)):
            image_name = image_path.split("/")[-1]
            img = root.find(f"./image[@name='{image_name}']")

            image_id = img.get("id")
            name = img.get("name")
            width = img.get("width")
            height = img.get("height")
            shapes = [self.parse_shape(shape) for shape in img]

            yield idx, {
                "id": image_id,
                "name": name,
                "image": {"path": image_path, "bytes": image.read()},
                "mask": {"path": mask_path, "bytes": mask.read()},
                "width": width,
                "height": height,
                "shapes": shapes,
            }