from xml.etree import ElementTree as ET import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {race-numbers-detection-and-ocr}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of photos of runners, participating in various races. Each photo captures a runner wearing a race number on their attire. The dataset provides **bounding boxes** annotations indicating the location of the race number in each photo and includes corresponding OCR annotations, where the digit sequences on the race numbers are transcribed. This dataset combines the domains of sports, computer vision, and OCR technology, providing a valuable resource for advancing the field of race number detection and OCR in the context of athletic events. """ _NAME = "race-numbers-detection-and-ocr" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" _LABELS = ["number"] class BotoxInjectionsBeforeAndAfter(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "name": datasets.Value("string"), "image": datasets.Image(), "mask": datasets.Image(), "width": datasets.Value("uint16"), "height": datasets.Value("uint16"), "shapes": datasets.Sequence( { "label": datasets.ClassLabel( num_classes=len(_LABELS), names=_LABELS, ), "type": datasets.Value("string"), "points": datasets.Sequence( datasets.Value("float"), ), "rotation": datasets.Value("float"), "attributes": datasets.Sequence( { "name": datasets.Value("string"), "text": datasets.Value("string"), } ), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download(f"{_DATA}images.tar.gz") masks = dl_manager.download(f"{_DATA}boxes.tar.gz") annotations = dl_manager.download(f"{_DATA}annotations.xml") images = dl_manager.iter_archive(images) masks = dl_manager.iter_archive(masks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "masks": masks, "annotations": annotations, }, ), ] @staticmethod def parse_shape(shape: ET.Element) -> dict: label = shape.get("label") shape_type = shape.tag rotation = shape.get("rotation", 0.0) points = None if shape_type == "points": points = tuple(map(float, shape.get("points").split(","))) elif shape_type == "box": points = [ (float(shape.get("xtl")), float(shape.get("ytl"))), (float(shape.get("xbr")), float(shape.get("ybr"))), ] elif shape_type == "polygon": points = [ tuple(map(float, point.split(","))) for point in shape.get("points").split(";") ] attributes = [] for attr in shape: attr_name = attr.get("name") attr_text = attr.text attributes.append({"name": attr_name, "text": attr_text}) shape_data = { "label": label, "type": shape_type, "points": points, "rotation": rotation, "attributes": attributes, } return shape_data def _generate_examples(self, images, masks, annotations): tree = ET.parse(annotations) root = tree.getroot() for idx, ( (image_path, image), (mask_path, mask), ) in enumerate(zip(images, masks)): image_name = image_path.split("/")[-1] img = root.find(f".//image.[@name='{image_name}']") print(img) image_id = img.get("id") name = img.get("name") width = img.get("width") height = img.get("height") shapes = [self.parse_shape(shape) for shape in img] yield idx, { "id": image_id, "name": name, "image": {"path": image_path, "bytes": image.read()}, "mask": {"path": mask_path, "bytes": mask.read()}, "width": width, "height": height, "shapes": shapes, }