Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
patent-summarization
License:
RonanMcGovern
commited on
Commit
•
c2c50b0
1
Parent(s):
e0520f3
Update README.md
Browse files
README.md
CHANGED
@@ -1,2 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Sampled big_patent Dataset
|
2 |
-
This is a sampled big_patent dataset containing 5000 train and 500 test rows.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license:
|
9 |
+
- cc-by-4.0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 100K<n<1M
|
14 |
+
- 10K<n<100K
|
15 |
+
- 1M<n<10M
|
16 |
+
source_datasets:
|
17 |
+
- original
|
18 |
+
task_categories:
|
19 |
+
- summarization
|
20 |
+
task_ids: []
|
21 |
+
paperswithcode_id: bigpatent
|
22 |
+
pretty_name: Big Patent
|
23 |
+
tags:
|
24 |
+
- patent-summarization
|
25 |
+
dataset_info:
|
26 |
+
- config_name: all
|
27 |
+
features:
|
28 |
+
- name: description
|
29 |
+
dtype: string
|
30 |
+
- name: abstract
|
31 |
+
dtype: string
|
32 |
+
splits:
|
33 |
+
- name: train
|
34 |
+
num_bytes: 38367048389
|
35 |
+
num_examples: 1207222
|
36 |
+
- name: validation
|
37 |
+
num_bytes: 2115827002
|
38 |
+
num_examples: 67068
|
39 |
+
- name: test
|
40 |
+
num_bytes: 2129505280
|
41 |
+
num_examples: 67072
|
42 |
+
download_size: 10142923776
|
43 |
+
dataset_size: 42612380671
|
44 |
+
- config_name: a
|
45 |
+
features:
|
46 |
+
- name: description
|
47 |
+
dtype: string
|
48 |
+
- name: abstract
|
49 |
+
dtype: string
|
50 |
+
splits:
|
51 |
+
- name: train
|
52 |
+
num_bytes: 5683460620
|
53 |
+
num_examples: 174134
|
54 |
+
- name: validation
|
55 |
+
num_bytes: 313324505
|
56 |
+
num_examples: 9674
|
57 |
+
- name: test
|
58 |
+
num_bytes: 316633277
|
59 |
+
num_examples: 9675
|
60 |
+
download_size: 10142923776
|
61 |
+
dataset_size: 6313418402
|
62 |
+
- config_name: b
|
63 |
+
features:
|
64 |
+
- name: description
|
65 |
+
dtype: string
|
66 |
+
- name: abstract
|
67 |
+
dtype: string
|
68 |
+
splits:
|
69 |
+
- name: train
|
70 |
+
num_bytes: 4236070976
|
71 |
+
num_examples: 161520
|
72 |
+
- name: validation
|
73 |
+
num_bytes: 234425138
|
74 |
+
num_examples: 8973
|
75 |
+
- name: test
|
76 |
+
num_bytes: 231538734
|
77 |
+
num_examples: 8974
|
78 |
+
download_size: 10142923776
|
79 |
+
dataset_size: 4702034848
|
80 |
+
- config_name: c
|
81 |
+
features:
|
82 |
+
- name: description
|
83 |
+
dtype: string
|
84 |
+
- name: abstract
|
85 |
+
dtype: string
|
86 |
+
splits:
|
87 |
+
- name: train
|
88 |
+
num_bytes: 4506249306
|
89 |
+
num_examples: 101042
|
90 |
+
- name: validation
|
91 |
+
num_bytes: 244684775
|
92 |
+
num_examples: 5613
|
93 |
+
- name: test
|
94 |
+
num_bytes: 252566793
|
95 |
+
num_examples: 5614
|
96 |
+
download_size: 10142923776
|
97 |
+
dataset_size: 5003500874
|
98 |
+
- config_name: d
|
99 |
+
features:
|
100 |
+
- name: description
|
101 |
+
dtype: string
|
102 |
+
- name: abstract
|
103 |
+
dtype: string
|
104 |
+
splits:
|
105 |
+
- name: train
|
106 |
+
num_bytes: 264717412
|
107 |
+
num_examples: 10164
|
108 |
+
- name: validation
|
109 |
+
num_bytes: 14560482
|
110 |
+
num_examples: 565
|
111 |
+
- name: test
|
112 |
+
num_bytes: 14403430
|
113 |
+
num_examples: 565
|
114 |
+
download_size: 10142923776
|
115 |
+
dataset_size: 293681324
|
116 |
+
- config_name: e
|
117 |
+
features:
|
118 |
+
- name: description
|
119 |
+
dtype: string
|
120 |
+
- name: abstract
|
121 |
+
dtype: string
|
122 |
+
splits:
|
123 |
+
- name: train
|
124 |
+
num_bytes: 881101433
|
125 |
+
num_examples: 34443
|
126 |
+
- name: validation
|
127 |
+
num_bytes: 48646158
|
128 |
+
num_examples: 1914
|
129 |
+
- name: test
|
130 |
+
num_bytes: 48586429
|
131 |
+
num_examples: 1914
|
132 |
+
download_size: 10142923776
|
133 |
+
dataset_size: 978334020
|
134 |
+
- config_name: f
|
135 |
+
features:
|
136 |
+
- name: description
|
137 |
+
dtype: string
|
138 |
+
- name: abstract
|
139 |
+
dtype: string
|
140 |
+
splits:
|
141 |
+
- name: train
|
142 |
+
num_bytes: 2146383473
|
143 |
+
num_examples: 85568
|
144 |
+
- name: validation
|
145 |
+
num_bytes: 119632631
|
146 |
+
num_examples: 4754
|
147 |
+
- name: test
|
148 |
+
num_bytes: 119596303
|
149 |
+
num_examples: 4754
|
150 |
+
download_size: 10142923776
|
151 |
+
dataset_size: 2385612407
|
152 |
+
- config_name: g
|
153 |
+
features:
|
154 |
+
- name: description
|
155 |
+
dtype: string
|
156 |
+
- name: abstract
|
157 |
+
dtype: string
|
158 |
+
splits:
|
159 |
+
- name: train
|
160 |
+
num_bytes: 8877854206
|
161 |
+
num_examples: 258935
|
162 |
+
- name: validation
|
163 |
+
num_bytes: 492581177
|
164 |
+
num_examples: 14385
|
165 |
+
- name: test
|
166 |
+
num_bytes: 496324853
|
167 |
+
num_examples: 14386
|
168 |
+
download_size: 10142923776
|
169 |
+
dataset_size: 9866760236
|
170 |
+
- config_name: h
|
171 |
+
features:
|
172 |
+
- name: description
|
173 |
+
dtype: string
|
174 |
+
- name: abstract
|
175 |
+
dtype: string
|
176 |
+
splits:
|
177 |
+
- name: train
|
178 |
+
num_bytes: 8075621958
|
179 |
+
num_examples: 257019
|
180 |
+
- name: validation
|
181 |
+
num_bytes: 447602356
|
182 |
+
num_examples: 14279
|
183 |
+
- name: test
|
184 |
+
num_bytes: 445460513
|
185 |
+
num_examples: 14279
|
186 |
+
download_size: 10142923776
|
187 |
+
dataset_size: 8968684827
|
188 |
+
- config_name: y
|
189 |
+
features:
|
190 |
+
- name: description
|
191 |
+
dtype: string
|
192 |
+
- name: abstract
|
193 |
+
dtype: string
|
194 |
+
splits:
|
195 |
+
- name: train
|
196 |
+
num_bytes: 3695589005
|
197 |
+
num_examples: 124397
|
198 |
+
- name: validation
|
199 |
+
num_bytes: 200369780
|
200 |
+
num_examples: 6911
|
201 |
+
- name: test
|
202 |
+
num_bytes: 204394948
|
203 |
+
num_examples: 6911
|
204 |
+
download_size: 10142923776
|
205 |
+
dataset_size: 4100353733
|
206 |
+
config_names:
|
207 |
+
- a
|
208 |
+
- all
|
209 |
+
- b
|
210 |
+
- c
|
211 |
+
- d
|
212 |
+
- e
|
213 |
+
- f
|
214 |
+
- g
|
215 |
+
- h
|
216 |
+
- y
|
217 |
+
---
|
218 |
# Sampled big_patent Dataset
|
219 |
+
This is a sampled big_patent dataset containing 5000 train and 500 test rows.
|
220 |
+
|
221 |
+
The original repo card follows below.
|
222 |
+
|
223 |
+
# Dataset Card for Big Patent
|
224 |
+
|
225 |
+
## Table of Contents
|
226 |
+
- [Dataset Description](#dataset-description)
|
227 |
+
- [Dataset Summary](#dataset-summary)
|
228 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
229 |
+
- [Languages](#languages)
|
230 |
+
- [Dataset Structure](#dataset-structure)
|
231 |
+
- [Data Instances](#data-instances)
|
232 |
+
- [Data Fields](#data-fields)
|
233 |
+
- [Data Splits](#data-splits)
|
234 |
+
- [Dataset Creation](#dataset-creation)
|
235 |
+
- [Curation Rationale](#curation-rationale)
|
236 |
+
- [Source Data](#source-data)
|
237 |
+
- [Annotations](#annotations)
|
238 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
239 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
240 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
241 |
+
- [Discussion of Biases](#discussion-of-biases)
|
242 |
+
- [Other Known Limitations](#other-known-limitations)
|
243 |
+
- [Additional Information](#additional-information)
|
244 |
+
- [Dataset Curators](#dataset-curators)
|
245 |
+
- [Licensing Information](#licensing-information)
|
246 |
+
- [Citation Information](#citation-information)
|
247 |
+
- [Contributions](#contributions)
|
248 |
+
|
249 |
+
## Dataset Description
|
250 |
+
|
251 |
+
- **Homepage:** [Big Patent](https://evasharma.github.io/bigpatent/)
|
252 |
+
- **Repository:**
|
253 |
+
- **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
|
254 |
+
- **Leaderboard:**
|
255 |
+
- **Point of Contact:** [Lu Wang](mailto:wangluxy@umich.edu)
|
256 |
+
|
257 |
+
### Dataset Summary
|
258 |
+
|
259 |
+
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries.
|
260 |
+
Each US patent application is filed under a Cooperative Patent Classification (CPC) code.
|
261 |
+
There are nine such classification categories:
|
262 |
+
- a: Human Necessities
|
263 |
+
- b: Performing Operations; Transporting
|
264 |
+
- c: Chemistry; Metallurgy
|
265 |
+
- d: Textiles; Paper
|
266 |
+
- e: Fixed Constructions
|
267 |
+
- f: Mechanical Engineering; Lightning; Heating; Weapons; Blasting
|
268 |
+
- g: Physics
|
269 |
+
- h: Electricity
|
270 |
+
- y: General tagging of new or cross-sectional technology
|
271 |
+
|
272 |
+
Current defaults are 2.1.2 version (fix update to cased raw strings) and 'all' CPC codes:
|
273 |
+
```python
|
274 |
+
from datasets import load_dataset
|
275 |
+
ds = load_dataset("big_patent") # default is 'all' CPC codes
|
276 |
+
ds = load_dataset("big_patent", "all") # the same as above
|
277 |
+
ds = load_dataset("big_patent", "a") # only 'a' CPC codes
|
278 |
+
ds = load_dataset("big_patent", codes=["a", "b"])
|
279 |
+
```
|
280 |
+
|
281 |
+
To use 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:
|
282 |
+
```python
|
283 |
+
ds = load_dataset("big_patent", codes="all", version="1.0.0")
|
284 |
+
ds = load_dataset("big_patent", codes="a", version="1.0.0")
|
285 |
+
ds = load_dataset("big_patent", codes=["a", "b"], version="1.0.0")
|
286 |
+
```
|
287 |
+
|
288 |
+
|
289 |
+
### Supported Tasks and Leaderboards
|
290 |
+
|
291 |
+
[More Information Needed]
|
292 |
+
|
293 |
+
### Languages
|
294 |
+
|
295 |
+
English
|
296 |
+
|
297 |
+
## Dataset Structure
|
298 |
+
|
299 |
+
### Data Instances
|
300 |
+
|
301 |
+
Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
|
302 |
+
```
|
303 |
+
{
|
304 |
+
'description': 'FIELD OF THE INVENTION \n [0001] This invention relates to novel calcium phosphate-coated implantable medical devices and processes of making same. The unique calcium-phosphate coated implantable medical devices minimize...',
|
305 |
+
'abstract': 'This invention relates to novel calcium phosphate-coated implantable medical devices...'
|
306 |
+
}
|
307 |
+
```
|
308 |
+
|
309 |
+
### Data Fields
|
310 |
+
|
311 |
+
- `description`: detailed description of patent.
|
312 |
+
- `abstract`: Patent abastract.
|
313 |
+
|
314 |
+
### Data Splits
|
315 |
+
|
316 |
+
| | train | validation | test |
|
317 |
+
|:----|------------------:|-------------:|-------:|
|
318 |
+
| all | 1207222 | 67068 | 67072 |
|
319 |
+
| a | 174134 | 9674 | 9675 |
|
320 |
+
| b | 161520 | 8973 | 8974 |
|
321 |
+
| c | 101042 | 5613 | 5614 |
|
322 |
+
| d | 10164 | 565 | 565 |
|
323 |
+
| e | 34443 | 1914 | 1914 |
|
324 |
+
| f | 85568 | 4754 | 4754 |
|
325 |
+
| g | 258935 | 14385 | 14386 |
|
326 |
+
| h | 257019 | 14279 | 14279 |
|
327 |
+
| y | 124397 | 6911 | 6911 |
|
328 |
+
|
329 |
+
## Dataset Creation
|
330 |
+
|
331 |
+
### Curation Rationale
|
332 |
+
|
333 |
+
[More Information Needed]
|
334 |
+
|
335 |
+
### Source Data
|
336 |
+
|
337 |
+
#### Initial Data Collection and Normalization
|
338 |
+
|
339 |
+
[More Information Needed]
|
340 |
+
|
341 |
+
#### Who are the source language producers?
|
342 |
+
|
343 |
+
[More Information Needed]
|
344 |
+
|
345 |
+
### Annotations
|
346 |
+
|
347 |
+
#### Annotation process
|
348 |
+
|
349 |
+
[More Information Needed]
|
350 |
+
|
351 |
+
#### Who are the annotators?
|
352 |
+
|
353 |
+
[More Information Needed]
|
354 |
+
|
355 |
+
### Personal and Sensitive Information
|
356 |
+
|
357 |
+
[More Information Needed]
|
358 |
+
|
359 |
+
## Considerations for Using the Data
|
360 |
+
|
361 |
+
### Social Impact of Dataset
|
362 |
+
|
363 |
+
[More Information Needed]
|
364 |
+
|
365 |
+
### Discussion of Biases
|
366 |
+
|
367 |
+
[More Information Needed]
|
368 |
+
|
369 |
+
### Other Known Limitations
|
370 |
+
|
371 |
+
[More Information Needed]
|
372 |
+
|
373 |
+
## Additional Information
|
374 |
+
|
375 |
+
### Dataset Curators
|
376 |
+
|
377 |
+
[More Information Needed]
|
378 |
+
|
379 |
+
### Licensing Information
|
380 |
+
|
381 |
+
[More Information Needed]
|
382 |
+
|
383 |
+
### Citation Information
|
384 |
+
|
385 |
+
```bibtex
|
386 |
+
@article{DBLP:journals/corr/abs-1906-03741,
|
387 |
+
author = {Eva Sharma and
|
388 |
+
Chen Li and
|
389 |
+
Lu Wang},
|
390 |
+
title = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
|
391 |
+
Summarization},
|
392 |
+
journal = {CoRR},
|
393 |
+
volume = {abs/1906.03741},
|
394 |
+
year = {2019},
|
395 |
+
url = {http://arxiv.org/abs/1906.03741},
|
396 |
+
eprinttype = {arXiv},
|
397 |
+
eprint = {1906.03741},
|
398 |
+
timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
|
399 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
|
400 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
401 |
+
}
|
402 |
+
```
|
403 |
+
|
404 |
+
### Contributions
|
405 |
+
|
406 |
+
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.
|