ludwig / ludwig.py
LauraRuis
add k=15,30
8bea8b3
raw
history blame
9.68 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""LUDWIG, (Language Understanding With Implied meaninG). The conversational implicature dataset."""
from typing import Dict, Union
import numpy as np
import copy
import csv
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
TBC
"""
_DESCRIPTION = """\
TODO
"""
_URL = "https://raw.githubusercontent.com/ucl-dark/ludwig/main/"
_URLS = {
"dev": _URL + "dev_conversational_implicatures.csv",
"test": _URL + "test_conversational_implicatures.csv"
}
class LudwigConfig(datasets.BuilderConfig):
"""BuilderConfig for LUDWIG."""
def __init__(self, k: int, seed: int, **kwargs):
"""BuilderConfig for LUDWIG.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LudwigConfig, self).__init__(**kwargs)
self.k = k
self.seed = seed
self.rng = np.random.default_rng(seed)
def __eq__(self, other):
return self.k == other.k and self.seed == other.seed
def reset_rng(self):
self.rng = np.random.default_rng(self.seed)
class Ludwig(datasets.GeneratorBasedBuilder):
"""LUDWIG: Conversational implicatures dataset."""
BUILDER_CONFIGS = [
LudwigConfig(
name="0-shot",
version=datasets.Version("1.0.0", ""),
description="Plain text",
k=0,
seed=0,
),
LudwigConfig(
name="1-shot",
version=datasets.Version("1.0.0", ""),
description="Plain text",
k=1,
seed=0
),
LudwigConfig(
name="5-shot",
version=datasets.Version("1.0.0", ""),
description="Plain text",
k=5,
seed=0
),
LudwigConfig(
name="10-shot",
version=datasets.Version("1.0.0", ""),
description="Plain text",
k=10,
seed=0
),
LudwigConfig(
name="15-shot",
version=datasets.Version("1.0.0", ""),
description="Plain text",
k=15,
seed=0
),
LudwigConfig(
name="30-shot",
version=datasets.Version("1.0.0", ""),
description="Plain text",
k=30,
seed=0
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"utterance": datasets.Value("string"),
"response": datasets.Value("string"),
"implicature": datasets.Value("string"),
"incoherent_implicature": datasets.Value("string"),
"prompts": datasets.features.Sequence(
{
"utterance": datasets.Value("string"),
"response": datasets.Value("string"),
"implicature": datasets.Value("string"),
"incoherent_implicature": datasets.Value("string"),
}
)
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://github.com/ucl-dark/ludwig",
citation=_CITATION
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"],
"dev_filepath": downloaded_files["dev"],
"k": self.config.k}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"],
"dev_filepath": downloaded_files["dev"],
"k": self.config.k}),
]
@staticmethod
def _process_text(text):
return text.strip("\n")
def _filter_examples(
self, input_line: Dict[str, str],
) -> Union[None, Dict[str, str]]:
"""
Takes an input_line from the csv file and filters all examples
where the implicature is not a simple yes or no.
:param input_line: a line read from a csv file with data
:param source: the source of the example
:return:
"""
if not input_line:
return None
if "yes" in input_line["Implicature"].lower()[:5]:
implicature = "yes"
elif "no" in input_line["Implicature"].lower()[:4]:
implicature = "no"
else:
return None
response = self._process_text(input_line["Response utterance"])
example = {
"utterance": self._process_text(input_line["Context utterance"]),
"response": response,
"implicature": implicature,
}
return example
def get_negative_binary_example(self, example):
"""
Creates a false example for a binary implicature example.
:param example:
:return: the same dict as the input except for the implicature is negated (yes to no and vice-versa)
"""
if example["implicature"] == "yes":
false_implicature = "no"
elif example["implicature"] == "no":
false_implicature = "yes"
else:
raise ValueError("Unknown implicature %s" % example["implicature"])
false_example = copy.deepcopy(example)
false_example["implicature"] = false_implicature
return false_example
def read_data_csv(
self,
test_input_data_path: str,
dev_input_data_path: str,
):
assert os.path.exists(
test_input_data_path
), "No input data file found at: %s\n" "Current working direction: %s" % (
test_input_data_path,
os.getcwd(),
)
assert os.path.exists(
dev_input_data_path
), "No dev input data file found at: %s\n" "Current working direction: %s" % (
dev_input_data_path,
os.getcwd(),
)
with open(test_input_data_path, newline="") as csvfile:
with open(dev_input_data_path, newline="") as dev_csvfile:
reader = csv.DictReader(csvfile)
dev_reader = csv.DictReader(dev_csvfile)
all_data = {
"test_data": [],
"dev_data": [],
}
for row in reader:
example = self._filter_examples(row)
if example is not None:
negative_example = self.get_negative_binary_example(example)["implicature"]
example = {**example,
"incoherent_implicature": negative_example}
all_data["test_data"].append(example)
for row in dev_reader:
example = self._filter_examples(row)
if example is not None:
negative_example = self.get_negative_binary_example(example)["implicature"]
example = {**example,
"incoherent_implicature": negative_example}
all_data["dev_data"].append(example)
return all_data
def _get_prompt_examples(self, dev_data, k_shot=0):
"""
A function to parse the i-th example in self.data["data"]
:param dev_data: list of examples to sample from
:param k_shot: how many extra examples to parse from different indices than i
:return: a parsed example
"""
if k_shot > 0:
prompt_indices = self.config.rng.choice(
range(len(dev_data)), k_shot, replace=False
)
prompt_examples = [dev_data[j] for j in prompt_indices]
else:
prompt_examples = []
return prompt_examples
def _generate_examples(self, filepath, dev_filepath, k: int):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
logger.info("k-shot examples from = %s", dev_filepath)
all_data = self.read_data_csv(filepath, dev_filepath)
self.config.reset_rng()
for i, example in enumerate(all_data["test_data"]):
prompt_examples = self._get_prompt_examples(all_data["dev_data"], k)
yield i, {
**example,
"prompts": prompt_examples,
"id": i + 1,
}