Upload item9/config_single_chunk.yaml with huggingface_hub
Browse files- item9/config_single_chunk.yaml +142 -0
item9/config_single_chunk.yaml
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pretrained diffusers model path.
|
2 |
+
pretrained_model_path: "ckpts/stable-video-diffusion-img2vid"
|
3 |
+
# The folder where your training outputs will be placed.
|
4 |
+
output_dir: "./outputs"
|
5 |
+
seed: 23
|
6 |
+
num_steps: 25
|
7 |
+
# Xformers must be installed for best memory savings and performance (< Pytorch 2.0)
|
8 |
+
enable_xformers_memory_efficient_attention: True
|
9 |
+
# Use scaled dot product attention (Only available with >= Torch 2.0)
|
10 |
+
enable_torch_2_attn: True
|
11 |
+
|
12 |
+
use_sarp: true
|
13 |
+
|
14 |
+
use_motion_lora: true
|
15 |
+
train_motion_lora_only: false
|
16 |
+
retrain_motion_lora: false
|
17 |
+
|
18 |
+
use_inversed_latents: true
|
19 |
+
use_attention_matching: true
|
20 |
+
use_consistency_attention_control: false
|
21 |
+
dtype: fp16
|
22 |
+
|
23 |
+
save_last_frames: True
|
24 |
+
load_from_last_frames_latents:
|
25 |
+
|
26 |
+
# data_params
|
27 |
+
data_params:
|
28 |
+
video_path: "../datasets/svdedit/item9/source.mp4"
|
29 |
+
keyframe_paths:
|
30 |
+
- "../datasets/svdedit/item9/panda.png"
|
31 |
+
- "../datasets/svdedit/item9/tiger.png"
|
32 |
+
start_t: 0
|
33 |
+
end_t: -1
|
34 |
+
sample_fps: 4
|
35 |
+
chunk_size: 14
|
36 |
+
overlay_size: 1
|
37 |
+
normalize: true
|
38 |
+
output_fps: 4
|
39 |
+
save_sampled_frame: true
|
40 |
+
output_res: [576, 1024]
|
41 |
+
pad_to_fit: false
|
42 |
+
begin_clip_id: 0
|
43 |
+
end_clip_id: 1
|
44 |
+
|
45 |
+
train_motion_lora_params:
|
46 |
+
cache_latents: true
|
47 |
+
cached_latent_dir: null #/path/to/cached_latents
|
48 |
+
lora_rank: 32
|
49 |
+
# Use LoRA for the UNET model.
|
50 |
+
use_unet_lora: True
|
51 |
+
# LoRA Dropout. This parameter adds the probability of randomly zeros out elements. Helps prevent overfitting.
|
52 |
+
# See: https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
|
53 |
+
lora_unet_dropout: 0.1
|
54 |
+
# The only time you want this off is if you're doing full LoRA training.
|
55 |
+
save_pretrained_model: False
|
56 |
+
# Learning rate for AdamW
|
57 |
+
learning_rate: 5e-4
|
58 |
+
# Weight decay. Higher = more regularization. Lower = closer to dataset.
|
59 |
+
adam_weight_decay: 1e-2
|
60 |
+
# Maximum number of train steps. Model is saved after training.
|
61 |
+
max_train_steps: 300
|
62 |
+
# Saves a model every nth step.
|
63 |
+
checkpointing_steps: 50
|
64 |
+
# How many steps to do for validation if sample_preview is enabled.
|
65 |
+
validation_steps: 50
|
66 |
+
# Whether or not we want to use mixed precision with accelerate
|
67 |
+
mixed_precision: "fp16"
|
68 |
+
# Trades VRAM usage for speed. You lose roughly 20% of training speed, but save a lot of VRAM.
|
69 |
+
# If you need to save more VRAM, it can also be enabled for the text encoder, but reduces speed x2.
|
70 |
+
gradient_checkpointing: True
|
71 |
+
image_encoder_gradient_checkpointing: True
|
72 |
+
|
73 |
+
train_data:
|
74 |
+
# The width and height in which you want your training data to be resized to.
|
75 |
+
width: 896
|
76 |
+
height: 512
|
77 |
+
# This will find the closest aspect ratio to your input width and height.
|
78 |
+
# For example, 512x512 width and height with a video of resolution 1280x720 will be resized to 512x256
|
79 |
+
use_data_aug: ~ #"rsfnet"
|
80 |
+
pad_to_fit: false
|
81 |
+
|
82 |
+
validation_data:
|
83 |
+
# Whether or not to sample preview during training (Requires more VRAM).
|
84 |
+
sample_preview: True
|
85 |
+
# The number of frames to sample during validation.
|
86 |
+
num_frames: 14
|
87 |
+
# Height and width of validation sample.
|
88 |
+
width: 1024
|
89 |
+
height: 576
|
90 |
+
pad_to_fit: false
|
91 |
+
# scale of spatial LoRAs, default is 0
|
92 |
+
spatial_scale: 0
|
93 |
+
# scale of noise prior, i.e. the scale of inversion noises
|
94 |
+
noise_prior:
|
95 |
+
#- 0.0
|
96 |
+
- 1.0
|
97 |
+
|
98 |
+
sarp_params:
|
99 |
+
sarp_noise_scale: 0.005
|
100 |
+
|
101 |
+
attention_matching_params:
|
102 |
+
best_checkpoint_index: 250
|
103 |
+
lora_scale: 1.0
|
104 |
+
# lora path
|
105 |
+
lora_dir: "./cache/item9/train_motion_lora"
|
106 |
+
|
107 |
+
disk_store: True
|
108 |
+
load_attention_store: "./cache/item9/attention_store/"
|
109 |
+
registered_modules:
|
110 |
+
BasicTransformerBlock:
|
111 |
+
- "attn1"
|
112 |
+
#- "attn2"
|
113 |
+
TemporalBasicTransformerBlock:
|
114 |
+
- "attn1"
|
115 |
+
#- "attn2"
|
116 |
+
control_mode:
|
117 |
+
spatial_self: "masked_copy"
|
118 |
+
temporal_self: "copy_v2"
|
119 |
+
cross_replace_steps: 0.0
|
120 |
+
temporal_self_replace_steps: 1.0
|
121 |
+
spatial_self_replace_steps: 1.0
|
122 |
+
spatial_attention_chunk_size: 1
|
123 |
+
|
124 |
+
params:
|
125 |
+
edit0:
|
126 |
+
temporal_step_thr: [0.6, 0.8]
|
127 |
+
mask_thr: [0.5, 0.5]
|
128 |
+
edit1:
|
129 |
+
temporal_step_thr: [0.4, 0.5]
|
130 |
+
mask_thr: [0.3, 0.3]
|
131 |
+
|
132 |
+
long_video_params:
|
133 |
+
mode: "skip-interval"
|
134 |
+
registered_modules:
|
135 |
+
BasicTransformerBlock:
|
136 |
+
#- "attn1"
|
137 |
+
#- "attn2"
|
138 |
+
TemporalBasicTransformerBlock:
|
139 |
+
- "attn1"
|
140 |
+
#- "attn2"
|
141 |
+
|
142 |
+
|