Delete item1/config_multi_chunks.yaml
Browse files- item1/config_multi_chunks.yaml +0 -150
item1/config_multi_chunks.yaml
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
# Pretrained diffusers model path.
|
2 |
-
pretrained_model_path: "ckpts/stable-video-diffusion-img2vid"
|
3 |
-
# The folder where your training outputs will be placed.
|
4 |
-
output_dir: "./sig_ablation"
|
5 |
-
seed: 23
|
6 |
-
num_steps: 25
|
7 |
-
# Xformers must be installed for best memory savings and performance (< Pytorch 2.0)
|
8 |
-
enable_xformers_memory_efficient_attention: True
|
9 |
-
# Use scaled dot product attention (Only available with >= Torch 2.0)
|
10 |
-
enable_torch_2_attn: True
|
11 |
-
|
12 |
-
use_sarp: true
|
13 |
-
|
14 |
-
use_motion_lora: true
|
15 |
-
train_motion_lora_only: false
|
16 |
-
retrain_motion_lora: false
|
17 |
-
|
18 |
-
use_inversed_latents: true
|
19 |
-
use_attention_matching: true
|
20 |
-
use_consistency_attention_control: true
|
21 |
-
dtype: fp16
|
22 |
-
|
23 |
-
visualize_attention_store: false
|
24 |
-
visualize_attention_store_steps: #[0, 5, 10, 15, 20, 24]
|
25 |
-
|
26 |
-
save_last_frames: True
|
27 |
-
load_from_last_frames_latents:
|
28 |
-
|
29 |
-
# data_params
|
30 |
-
data_params:
|
31 |
-
video_path: "../datasets/svdedit/item1/girl.mp4"
|
32 |
-
keyframe_paths:
|
33 |
-
- "../datasets/svdedit/item1/edit1.png"
|
34 |
-
- "../datasets/svdedit/item1/edit2.png"
|
35 |
-
- "../datasets/svdedit/item1/edit3.png"
|
36 |
-
start_t: 0
|
37 |
-
end_t: 8.4
|
38 |
-
sample_fps: 2.5
|
39 |
-
chunk_size: 11
|
40 |
-
overlay_size: 1
|
41 |
-
normalize: true
|
42 |
-
output_fps: 5
|
43 |
-
save_sampled_frame: true
|
44 |
-
output_res: [576, 1024]
|
45 |
-
pad_to_fit: false
|
46 |
-
begin_clip_id: 0
|
47 |
-
end_clip_id: 2
|
48 |
-
|
49 |
-
train_motion_lora_params:
|
50 |
-
cache_latents: true
|
51 |
-
cached_latent_dir: null #/path/to/cached_latents
|
52 |
-
lora_rank: 32
|
53 |
-
# Use LoRA for the UNET model.
|
54 |
-
use_unet_lora: True
|
55 |
-
# LoRA Dropout. This parameter adds the probability of randomly zeros out elements. Helps prevent overfitting.
|
56 |
-
# See: https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
|
57 |
-
lora_unet_dropout: 0.1
|
58 |
-
# The only time you want this off is if you're doing full LoRA training.
|
59 |
-
save_pretrained_model: False
|
60 |
-
# Learning rate for AdamW
|
61 |
-
learning_rate: 5e-4
|
62 |
-
# Weight decay. Higher = more regularization. Lower = closer to dataset.
|
63 |
-
adam_weight_decay: 1e-2
|
64 |
-
# Maximum number of train steps. Model is saved after training.
|
65 |
-
max_train_steps: 300
|
66 |
-
# Saves a model every nth step.
|
67 |
-
checkpointing_steps: 50
|
68 |
-
# How many steps to do for validation if sample_preview is enabled.
|
69 |
-
validation_steps: 50
|
70 |
-
# Whether or not we want to use mixed precision with accelerate
|
71 |
-
mixed_precision: "fp16"
|
72 |
-
# Trades VRAM usage for speed. You lose roughly 20% of training speed, but save a lot of VRAM.
|
73 |
-
# If you need to save more VRAM, it can also be enabled for the text encoder, but reduces speed x2.
|
74 |
-
gradient_checkpointing: True
|
75 |
-
image_encoder_gradient_checkpointing: True
|
76 |
-
|
77 |
-
train_data:
|
78 |
-
# The width and height in which you want your training data to be resized to.
|
79 |
-
width: 896
|
80 |
-
height: 512
|
81 |
-
# This will find the closest aspect ratio to your input width and height.
|
82 |
-
# For example, 512x512 width and height with a video of resolution 1280x720 will be resized to 512x256
|
83 |
-
use_data_aug: ~ #"controlnet"
|
84 |
-
pad_to_fit: false
|
85 |
-
|
86 |
-
validation_data:
|
87 |
-
# Whether or not to sample preview during training (Requires more VRAM).
|
88 |
-
sample_preview: True
|
89 |
-
# The number of frames to sample during validation.
|
90 |
-
num_frames: 14
|
91 |
-
# Height and width of validation sample.
|
92 |
-
width: 1024
|
93 |
-
height: 576
|
94 |
-
pad_to_fit: false
|
95 |
-
# scale of spatial LoRAs, default is 0
|
96 |
-
spatial_scale: 0
|
97 |
-
# scale of noise prior, i.e. the scale of inversion noises
|
98 |
-
noise_prior:
|
99 |
-
#- 0.0
|
100 |
-
- 1.0
|
101 |
-
|
102 |
-
sarp_params:
|
103 |
-
sarp_noise_scale: 0.005
|
104 |
-
|
105 |
-
attention_matching_params:
|
106 |
-
best_checkpoint_index: 250
|
107 |
-
lora_scale: 1.0
|
108 |
-
# lora path
|
109 |
-
lora_dir: "./cache/item1/train_motion_lora"
|
110 |
-
max_guidance_scale: 2.0
|
111 |
-
|
112 |
-
disk_store: True
|
113 |
-
load_attention_store: "./cache/item1/attention_store"
|
114 |
-
load_consistency_attention_store: "./cache/item1/consistency_attention_store"
|
115 |
-
registered_modules:
|
116 |
-
BasicTransformerBlock:
|
117 |
-
- "attn1"
|
118 |
-
#- "attn2"
|
119 |
-
TemporalBasicTransformerBlock:
|
120 |
-
- "attn1"
|
121 |
-
#- "attn2"
|
122 |
-
control_mode:
|
123 |
-
spatial_self: "masked_copy"
|
124 |
-
temporal_self: "copy_v2"
|
125 |
-
cross_replace_steps: 0.0
|
126 |
-
temporal_self_replace_steps: 1.0
|
127 |
-
spatial_self_replace_steps: 1.0
|
128 |
-
spatial_attention_chunk_size: 1
|
129 |
-
|
130 |
-
params:
|
131 |
-
edit0:
|
132 |
-
temporal_step_thr: [0.5, 0.8]
|
133 |
-
mask_thr: [0.35, 0.35]
|
134 |
-
edit1:
|
135 |
-
temporal_step_thr: [0.5, 0.8]
|
136 |
-
mask_thr: [0.35, 0.35]
|
137 |
-
edit2:
|
138 |
-
temporal_step_thr: [0.8, 0.9]
|
139 |
-
mask_thr: [0.35, 0.35]
|
140 |
-
|
141 |
-
long_video_params:
|
142 |
-
mode: "skip-interval"
|
143 |
-
registered_modules:
|
144 |
-
BasicTransformerBlock:
|
145 |
-
#- "attn1"
|
146 |
-
#- "attn2"
|
147 |
-
TemporalBasicTransformerBlock:
|
148 |
-
- "attn1"
|
149 |
-
#- "attn2"
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|