Vicky0522 commited on
Commit
6189993
1 Parent(s): 6572ad2

Upload item1/config_single_chunk.yaml with huggingface_hub

Browse files
Files changed (1) hide show
  1. item1/config_single_chunk.yaml +150 -0
item1/config_single_chunk.yaml ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pretrained diffusers model path.
2
+ pretrained_model_path: "ckpts/stable-video-diffusion-img2vid"
3
+ # The folder where your training outputs will be placed.
4
+ output_dir: "./sig_ablation"
5
+ seed: 23
6
+ num_steps: 25
7
+ # Xformers must be installed for best memory savings and performance (< Pytorch 2.0)
8
+ enable_xformers_memory_efficient_attention: True
9
+ # Use scaled dot product attention (Only available with >= Torch 2.0)
10
+ enable_torch_2_attn: True
11
+
12
+ use_sarp: true
13
+
14
+ use_motion_lora: true
15
+ train_motion_lora_only: false
16
+ retrain_motion_lora: false
17
+
18
+ use_inversed_latents: true
19
+ use_attention_matching: true
20
+ use_consistency_attention_control: false
21
+ dtype: fp16
22
+
23
+ visualize_attention_store: false
24
+ visualize_attention_store_steps: #[0, 5, 10, 15, 20, 24]
25
+
26
+ save_last_frames: True
27
+ load_from_last_frames_latents:
28
+
29
+ # data_params
30
+ data_params:
31
+ video_path: "../datasets/svdedit/item1/girl.mp4"
32
+ keyframe_paths:
33
+ - "../datasets/svdedit/item1/edit1.png"
34
+ - "../datasets/svdedit/item1/edit2.png"
35
+ - "../datasets/svdedit/item1/edit3.png"
36
+ start_t: 0
37
+ end_t: 8.4
38
+ sample_fps: 2.5
39
+ chunk_size: 11
40
+ overlay_size: 1
41
+ normalize: true
42
+ output_fps: 5
43
+ save_sampled_frame: true
44
+ output_res: [576, 1024]
45
+ pad_to_fit: false
46
+ begin_clip_id: 0
47
+ end_clip_id: 1
48
+
49
+ train_motion_lora_params:
50
+ cache_latents: true
51
+ cached_latent_dir: null #/path/to/cached_latents
52
+ lora_rank: 32
53
+ # Use LoRA for the UNET model.
54
+ use_unet_lora: True
55
+ # LoRA Dropout. This parameter adds the probability of randomly zeros out elements. Helps prevent overfitting.
56
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
57
+ lora_unet_dropout: 0.1
58
+ # The only time you want this off is if you're doing full LoRA training.
59
+ save_pretrained_model: False
60
+ # Learning rate for AdamW
61
+ learning_rate: 5e-4
62
+ # Weight decay. Higher = more regularization. Lower = closer to dataset.
63
+ adam_weight_decay: 1e-2
64
+ # Maximum number of train steps. Model is saved after training.
65
+ max_train_steps: 300
66
+ # Saves a model every nth step.
67
+ checkpointing_steps: 50
68
+ # How many steps to do for validation if sample_preview is enabled.
69
+ validation_steps: 50
70
+ # Whether or not we want to use mixed precision with accelerate
71
+ mixed_precision: "fp16"
72
+ # Trades VRAM usage for speed. You lose roughly 20% of training speed, but save a lot of VRAM.
73
+ # If you need to save more VRAM, it can also be enabled for the text encoder, but reduces speed x2.
74
+ gradient_checkpointing: True
75
+ image_encoder_gradient_checkpointing: True
76
+
77
+ train_data:
78
+ # The width and height in which you want your training data to be resized to.
79
+ width: 896
80
+ height: 512
81
+ # This will find the closest aspect ratio to your input width and height.
82
+ # For example, 512x512 width and height with a video of resolution 1280x720 will be resized to 512x256
83
+ use_data_aug: ~ #"controlnet"
84
+ pad_to_fit: false
85
+
86
+ validation_data:
87
+ # Whether or not to sample preview during training (Requires more VRAM).
88
+ sample_preview: True
89
+ # The number of frames to sample during validation.
90
+ num_frames: 14
91
+ # Height and width of validation sample.
92
+ width: 1024
93
+ height: 576
94
+ pad_to_fit: false
95
+ # scale of spatial LoRAs, default is 0
96
+ spatial_scale: 0
97
+ # scale of noise prior, i.e. the scale of inversion noises
98
+ noise_prior:
99
+ #- 0.0
100
+ - 1.0
101
+
102
+ sarp_params:
103
+ sarp_noise_scale: 0.005
104
+
105
+ attention_matching_params:
106
+ best_checkpoint_index: 250
107
+ lora_scale: 1.0
108
+ # lora path
109
+ lora_dir: "./cache/item1/train_motion_lora"
110
+ max_guidance_scale: 2.0
111
+
112
+ disk_store: True
113
+ load_attention_store: "./cache/item1/attention_store"
114
+ load_consistency_attention_store: "./cache/item1/consistency_attention_store"
115
+ registered_modules:
116
+ BasicTransformerBlock:
117
+ - "attn1"
118
+ #- "attn2"
119
+ TemporalBasicTransformerBlock:
120
+ - "attn1"
121
+ #- "attn2"
122
+ control_mode:
123
+ spatial_self: "masked_copy"
124
+ temporal_self: "copy_v2"
125
+ cross_replace_steps: 0.0
126
+ temporal_self_replace_steps: 1.0
127
+ spatial_self_replace_steps: 1.0
128
+ spatial_attention_chunk_size: 1
129
+
130
+ params:
131
+ edit0:
132
+ temporal_step_thr: [0.5, 0.8]
133
+ mask_thr: [0.35, 0.35]
134
+ edit1:
135
+ temporal_step_thr: [0.5, 0.8]
136
+ mask_thr: [0.35, 0.35]
137
+ edit2:
138
+ temporal_step_thr: [0.8, 0.9]
139
+ mask_thr: [0.35, 0.35]
140
+
141
+ long_video_params:
142
+ mode: "skip-interval"
143
+ registered_modules:
144
+ BasicTransformerBlock:
145
+ #- "attn1"
146
+ #- "attn2"
147
+ TemporalBasicTransformerBlock:
148
+ - "attn1"
149
+ #- "attn2"
150
+