Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
10K - 100K
File size: 2,915 Bytes
2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 4acc1e6 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a 2ad1695 764f26a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- image-classification
task_ids: []
pretty_name: Food101
tags:
- fiftyone
- image
- image-classification
dataset_summary: >
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Food101")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for Food-101
![image](food-101.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.
**Note:** This dataset is subset of the full Food101 dataset. The recipe notebook for creating this dataset can be found [here](https://colab.research.google.com/drive/11ZDZxaRTVR3DjANNR4p5CnCYqlTYmpfT)
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Food101")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
The Food-101 dataset is a large-scale dataset for food recognition, consisting of 101,000 images across 101 different food categories.
Here are the key details:
- Contains a total of 101,000 images
- Each food class has 1,000 images, with 750 training images and 250 test images per class
- All images were rescaled to have a maximum side length of 512 pixels
- **Curated by:** Lukas Bossard, Matthieu Guillaumin, Luc Van Gool
- **Funded by:** Computer Vision Lab, ETH Zurich, Switzerland
- **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** The dataset images come from Foodspotting and are not owned by the creators of the Food-101 dataset (ETH Zurich). Any use beyond scientific fair use must be negotiated with the respective picture owners according to the Foodspotting terms of use
### Dataset Sources
- **Repository:** https://huggingface.co/datasets/ethz/food101
- **Website:** https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
- **Paper:** https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf
## Citation
**BibTeX:**
```bibtex
@inproceedings{bossard14,
title = {Food-101 -- Mining Discriminative Components with Random Forests},
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
booktitle = {European Conference on Computer Vision},
year = {2014}
}
``` |