File size: 2,915 Bytes
2ad1695
 
 
 
 
 
 
 
764f26a
2ad1695
 
 
 
764f26a
2ad1695
 
 
 
764f26a
 
2ad1695
 
 
 
 
764f26a
2ad1695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764f26a
2ad1695
764f26a
2ad1695
 
 
 
 
 
 
 
 
764f26a
2ad1695
4acc1e6
2ad1695
 
 
 
764f26a
 
2ad1695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764f26a
2ad1695
 
 
 
 
 
 
 
 
 
764f26a
2ad1695
764f26a
2ad1695
764f26a
 
 
2ad1695
764f26a
 
 
2ad1695
764f26a
2ad1695
764f26a
2ad1695
764f26a
 
 
2ad1695
764f26a
2ad1695
 
 
764f26a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- image-classification
task_ids: []
pretty_name: Food101
tags:
- fiftyone
- image
- image-classification
dataset_summary: >




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = fouh.load_from_hub("Voxel51/Food101")


  # Launch the App

  session = fo.launch_app(dataset)

  ```
---

# Dataset Card for Food-101

![image](food-101.gif)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 35000 samples.

**Note:** This dataset is subset of the full Food101 dataset. The recipe notebook for creating this dataset can be found [here](https://colab.research.google.com/drive/11ZDZxaRTVR3DjANNR4p5CnCYqlTYmpfT)

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/Food101")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

The Food-101 dataset is a large-scale dataset for food recognition, consisting of 101,000 images across 101 different food categories. 

Here are the key details:

- Contains a total of 101,000 images
- Each food class has 1,000 images, with 750 training images and 250 test images per class
- All images were rescaled to have a maximum side length of 512 pixels

- **Curated by:** Lukas Bossard, Matthieu Guillaumin, Luc Van Gool
- **Funded by:** Computer Vision Lab, ETH Zurich, Switzerland
- **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** The dataset images come from Foodspotting and are not owned by the creators of the Food-101 dataset (ETH Zurich). Any use beyond scientific fair use must be negotiated with the respective picture owners according to the Foodspotting terms of use

### Dataset Sources

- **Repository:** https://huggingface.co/datasets/ethz/food101
- **Website:** https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
- **Paper:** https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf

## Citation

**BibTeX:**

```bibtex
@inproceedings{bossard14,
  title = {Food-101 -- Mining Discriminative Components with Random Forests},
  author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
  booktitle = {European Conference on Computer Vision},
  year = {2014}
}
```