|
import matplotlib.pyplot as plt |
|
import librosa |
|
import matplotlib |
|
import pandas as pd |
|
from typing import Optional |
|
from torch import tensor |
|
from ddsp.core import tf_float32 |
|
import torch |
|
from torch import Tensor |
|
import numpy as np |
|
import tensorflow as tf |
|
from torchsynth.config import SynthConfig |
|
import ddsp |
|
from pathlib import Path |
|
from typing import Dict |
|
from data_generation.encoding import ParameterDescription |
|
from typing import List |
|
from configurations.read_configuration import parameter_range, is_discrete, midi_parameter_range, midi_is_discrete |
|
import shutil |
|
from tqdm import tqdm |
|
from scipy.io.wavfile import write |
|
from melody_synth.complex_torch_synth import DoubleSawSynth, SinSawSynth, SinTriangleSynth, TriangleSawSynth |
|
|
|
sample_rate = 16000 |
|
n_samples = sample_rate * 4.5 |
|
|
|
|
|
class NoteGenerator: |
|
""" |
|
This class is responsible for single-note audio generation by function 'get_note'. |
|
""" |
|
|
|
def __init__(self, |
|
sample_rate=sample_rate, |
|
n_samples=sample_rate * 4.5): |
|
self.sample_rate = sample_rate |
|
self.n_samples = n_samples |
|
synthconfig = SynthConfig( |
|
batch_size=1, reproducible=False, sample_rate=sample_rate, |
|
buffer_size_seconds=np.float64(n_samples) / np.float64(sample_rate) |
|
) |
|
self.Saw_Square_Voice = DoubleSawSynth(synthconfig) |
|
self.SinSawVoice = SinSawSynth(synthconfig) |
|
self.SinTriVoice = SinTriangleSynth(synthconfig) |
|
self.TriSawVoice = TriangleSawSynth(synthconfig) |
|
|
|
def get_note(self, params: Dict[str, float]): |
|
osc_amp2 = np.float64(params.get("osc_amp2", 0)) |
|
|
|
if osc_amp2 < 0.45: |
|
osc1_amp = 0.9 |
|
osc2_amp = osc_amp2 |
|
else: |
|
osc1_amp = 0.9 - osc_amp2 |
|
osc2_amp = 0.9 |
|
|
|
attack_1 = np.float64(params.get("attack_1", 0)) |
|
decay_1 = np.float64(params.get("decay_1", 0)) |
|
sustain_1 = np.float64(params.get("sustain_1", 0)) |
|
release_1 = np.float64(params.get("release_1", 0)) |
|
|
|
attack_2 = np.float64(params.get("attack_2", 0)) |
|
decay_2 = np.float64(params.get("decay_2", 0)) |
|
sustain_2 = np.float64(params.get("sustain_2", 0)) |
|
release_2 = np.float64(params.get("release_2", 0)) |
|
|
|
amp_mod_freq = params.get("amp_mod_freq", 0) |
|
amp_mod_depth = params.get("amp_mod_depth", 0) |
|
amp_mod_waveform = params.get("amp_mod_waveform", 0) |
|
|
|
pitch_mod_freq_1 = params.get("pitch_mod_freq_1", 0) |
|
pitch_mod_depth = params.get("pitch_mod_depth", 0) |
|
|
|
cutoff_freq = params.get("cutoff_freq", 4000) |
|
|
|
pitch = np.float64(params.get("pitch", 0)) |
|
duration = np.float64(params.get("duration", 0)) |
|
|
|
syn_parameters = { |
|
("adsr_1", "attack"): tensor([attack_1]), |
|
("adsr_1", "decay"): tensor([decay_1]), |
|
("adsr_1", "sustain"): tensor([sustain_1]), |
|
("adsr_1", "release"): tensor([release_1]), |
|
("adsr_1", "alpha"): tensor([5]), |
|
|
|
("adsr_2", "attack"): tensor([attack_2]), |
|
("adsr_2", "decay"): tensor([decay_2]), |
|
("adsr_2", "sustain"): tensor([sustain_2]), |
|
("adsr_2", "release"): tensor([release_2]), |
|
("adsr_2", "alpha"): tensor([5]), |
|
("keyboard", "midi_f0"): tensor([pitch]), |
|
("keyboard", "duration"): tensor([duration]), |
|
|
|
|
|
("mixer", "vco_1"): tensor([osc1_amp]), |
|
("mixer", "vco_2"): tensor([osc2_amp]), |
|
|
|
|
|
("vco_1", "mod_depth"): tensor([pitch_mod_depth]), |
|
("vco_1", "tuning"): tensor([0.0]), |
|
("vco_2", "mod_depth"): tensor([pitch_mod_depth]), |
|
("vco_2", "tuning"): tensor([0.0]), |
|
|
|
|
|
("lfo_amp_sin", "frequency"): tensor([amp_mod_freq]), |
|
("lfo_amp_sin", "mod_depth"): tensor([0]), |
|
("lfo_pitch_sin_1", "frequency"): tensor([pitch_mod_freq_1]), |
|
("lfo_pitch_sin_1", "mod_depth"): tensor([10]), |
|
("lfo_pitch_sin_2", "frequency"): tensor([pitch_mod_freq_1]), |
|
("lfo_pitch_sin_2", "mod_depth"): tensor([10]), |
|
} |
|
|
|
osc_types = params.get("osc_types", 0) |
|
if osc_types == 0: |
|
synth = self.SinSawVoice |
|
syn_parameters[("vco_2", "shape")] = tensor([1]) |
|
elif osc_types == 1: |
|
synth = self.SinSawVoice |
|
syn_parameters[("vco_2", "shape")] = tensor([0]) |
|
elif osc_types == 2: |
|
synth = self.Saw_Square_Voice |
|
syn_parameters[("vco_1", "shape")] = tensor([1]) |
|
syn_parameters[("vco_2", "shape")] = tensor([0]) |
|
elif osc_types == 3: |
|
synth = self.SinTriVoice |
|
elif osc_types == 4: |
|
synth = self.TriSawVoice |
|
syn_parameters[("vco_2", "shape")] = tensor([1]) |
|
else: |
|
synth = self.TriSawVoice |
|
syn_parameters[("vco_2", "shape")] = tensor([0]) |
|
|
|
synth.set_parameters(syn_parameters) |
|
audio_out = synth.get_signal(amp_mod_depth, amp_mod_waveform, int(sample_rate * duration), osc1_amp, osc2_amp) |
|
single_note = audio_out[0].detach().numpy() |
|
|
|
cutoff_freq = tf_float32(cutoff_freq) |
|
impulse_response = ddsp.core.sinc_impulse_response(cutoff_freq, 2048, self.sample_rate) |
|
single_note = tf_float32(single_note) |
|
return ddsp.core.fft_convolve(single_note[tf.newaxis, :], impulse_response)[0, :] |
|
|
|
|
|
class MelodyGenerator: |
|
""" |
|
This class is responsible for multi-note audio generation by function 'get_melody'. |
|
""" |
|
|
|
def __init__(self, |
|
sample_rate=sample_rate, |
|
n_note_samples=sample_rate * 4.5, |
|
n_melody_samples=sample_rate * 4.5): |
|
self.sample_rate = sample_rate |
|
self.noteGenerator = NoteGenerator(sample_rate, sample_rate * 4.5) |
|
self.n_melody_samples = int(n_melody_samples) |
|
|
|
def get_melody(self, params_list: List[Dict[str, float]], onsets): |
|
track = np.zeros(self.n_melody_samples) |
|
for i in range(len(onsets)): |
|
location = onsets[i] |
|
single_note = self.noteGenerator.get_note(params_list[i]) |
|
single_note = np.hstack( |
|
[np.zeros(int(location)), single_note, np.zeros(self.n_melody_samples)])[ |
|
:self.n_melody_samples] |
|
track = track + single_note |
|
return track |
|
|
|
|
|
def plot_log_spectrogram(signal: np.ndarray, |
|
path: str, |
|
n_fft=2048, |
|
frame_length=1024, |
|
frame_step=256): |
|
"""Write spectrogram.""" |
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
magnitude_spectrum = np.abs(amp) |
|
log_mel = np_power_to_db(magnitude_spectrum) |
|
matplotlib.pyplot.imsave(path, log_mel, vmin=-100, vmax=0, origin='lower') |
|
|
|
|
|
def np_power_to_db(S, amin=1e-16, top_db=80.0): |
|
"""A helper function for scaling.""" |
|
|
|
def np_log10(x): |
|
numerator = np.log(x) |
|
denominator = np.log(10) |
|
return numerator / denominator |
|
|
|
|
|
|
|
ref = np.max(S) |
|
|
|
|
|
log_spec = 10.0 * np_log10(np.maximum(amin, S)) |
|
log_spec -= 10.0 * np_log10(np.maximum(amin, ref)) |
|
|
|
log_spec = np.maximum(log_spec, np.max(log_spec) - top_db) |
|
|
|
return log_spec |
|
|
|
|
|
synth = MelodyGenerator() |
|
param_descriptions: List[ParameterDescription] |
|
|
|
param_descriptions = [ |
|
|
|
|
|
ParameterDescription(name="osc_amp2", |
|
values=parameter_range('osc_amp2'), |
|
discrete=is_discrete('osc_amp2')), |
|
|
|
|
|
ParameterDescription(name="attack_1", |
|
values=parameter_range('attack'), |
|
discrete=is_discrete('attack')), |
|
ParameterDescription(name="decay_1", |
|
values=parameter_range('decay'), |
|
discrete=is_discrete('decay')), |
|
ParameterDescription(name="sustain_1", |
|
values=parameter_range('sustain'), |
|
discrete=is_discrete('sustain')), |
|
ParameterDescription(name="release_1", |
|
values=parameter_range('release'), |
|
discrete=is_discrete('release')), |
|
ParameterDescription(name="attack_2", |
|
values=parameter_range('attack'), |
|
discrete=is_discrete('attack')), |
|
ParameterDescription(name="decay_2", |
|
values=parameter_range('decay'), |
|
discrete=is_discrete('decay')), |
|
ParameterDescription(name="sustain_2", |
|
values=parameter_range('sustain'), |
|
discrete=is_discrete('sustain')), |
|
ParameterDescription(name="release_2", |
|
values=parameter_range('release'), |
|
discrete=is_discrete('release')), |
|
|
|
ParameterDescription(name="cutoff_freq", |
|
values=parameter_range('cutoff_freq'), |
|
discrete=is_discrete('cutoff_freq')), |
|
ParameterDescription(name="pitch", |
|
values=midi_parameter_range('pitch'), |
|
discrete=midi_is_discrete('pitch')), |
|
ParameterDescription(name="duration", |
|
values=midi_parameter_range('duration'), |
|
discrete=midi_is_discrete('duration')), |
|
|
|
ParameterDescription(name="amp_mod_freq", |
|
values=parameter_range('amp_mod_freq'), |
|
discrete=is_discrete('amp_mod_freq')), |
|
ParameterDescription(name="amp_mod_depth", |
|
values=parameter_range('amp_mod_depth'), |
|
discrete=is_discrete('amp_mod_depth')), |
|
|
|
ParameterDescription(name="pitch_mod_freq_1", |
|
values=parameter_range('pitch_mod_freq'), |
|
discrete=is_discrete('pitch_mod_freq')), |
|
|
|
ParameterDescription(name="pitch_mod_freq_2", |
|
values=parameter_range('pitch_mod_freq'), |
|
discrete=is_discrete('pitch_mod_freq')), |
|
ParameterDescription(name="pitch_mod_depth", |
|
values=parameter_range('pitch_mod_depth'), |
|
discrete=is_discrete('pitch_mod_depth')), |
|
|
|
|
|
|
|
|
|
ParameterDescription(name="osc_types", |
|
values=parameter_range('osc_types'), |
|
discrete=is_discrete('osc_types')), |
|
] |
|
|
|
frame_length = 1024 |
|
frame_step = 256 |
|
spectrogram_len = 256 |
|
|
|
n_fft = 1024 |
|
|
|
|
|
def generate_synth_dataset_log_muted_512(n: int, path_name="./data/data_log", write_spec=False): |
|
if Path(path_name).exists(): |
|
shutil.rmtree(path_name) |
|
|
|
Path(path_name).mkdir(parents=True, exist_ok=True) |
|
print("Generating dataset...") |
|
|
|
synthetic_data = np.ones((n, 512, 256)) |
|
|
|
for i in range(n): |
|
index = i |
|
parameter_values = [param.generate() for param in param_descriptions] |
|
parameter_values_raw = {param.name: param.value for param in parameter_values} |
|
parameter_values_raw["duration"] = 3.0 |
|
parameter_values_raw["pitch"] = 52 |
|
parameter_values_raw["pitch_mod_depth"] = 0.0 |
|
signal = synth.get_melody([parameter_values_raw], [0]) |
|
|
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
|
|
synthetic_data[i] = amp[:512, :256] |
|
|
|
if write_spec: |
|
write(path_name + f"/{i}.wav", synth.sample_rate, signal) |
|
plot_log_spectrogram(signal, path=path_name + f"/{i}.png", frame_length=frame_length, frame_step=frame_step) |
|
print(f"Generating dataset over, {n} samples generated!") |
|
return synthetic_data |
|
|
|
|
|
def generate_synth_dataset_log_512(n: int, path_name="./data/data_log", write_spec=False): |
|
"""Generate the synthetic dataset with a progress bar.""" |
|
if Path(path_name).exists(): |
|
shutil.rmtree(path_name) |
|
|
|
Path(path_name).mkdir(parents=True, exist_ok=True) |
|
print("Generating dataset...") |
|
|
|
synthetic_data = np.ones((n, 512, 256)) |
|
|
|
for i in tqdm(range(n)): |
|
index = i |
|
parameter_values = [param.generate() for param in param_descriptions] |
|
parameter_values_raw = {param.name: param.value for param in parameter_values} |
|
parameter_values_raw["duration"] = 3.0 |
|
parameter_values_raw["pitch"] = 52 |
|
parameter_values_raw["pitch_mod_depth"] = 0.0 |
|
signal = synth.get_melody([parameter_values_raw], [0]) |
|
|
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
|
|
synthetic_data[i] = amp[:512, :256] |
|
|
|
if write_spec: |
|
write(path_name + f"/{i}.wav", synth.sample_rate, signal) |
|
plot_log_spectrogram(signal, path=path_name + f"/{i}.png", frame_length=frame_length, frame_step=frame_step) |
|
print(f"Generating dataset over, {n} samples generated!") |
|
return synthetic_data |
|
|
|
|
|
def generate_DANN_dataset_muted(n: int, path_name="./data/data_DANN", write_spec=False): |
|
"""Generate the synthetic dataset without a progress bar.""" |
|
if Path(path_name).exists(): |
|
shutil.rmtree(path_name) |
|
|
|
Path(path_name).mkdir(parents=True, exist_ok=True) |
|
print("Generating dataset...") |
|
|
|
multinote_data = np.ones((n, 512, 256)) |
|
single_data = np.ones((n, 512, 256)) |
|
for i in range(n): |
|
index = i |
|
par_list = [] |
|
n_notes = np.random.randint(1, 5) |
|
onsets = [] |
|
for j in range(n_notes): |
|
parameter_values = [param.generate() for param in param_descriptions] |
|
parameter_values_raw = {param.name: param.value for param in parameter_values} |
|
|
|
parameter_values_raw["pitch_mod_depth"] = 0.0 |
|
par_list.append(parameter_values_raw) |
|
onsets.append(np.random.randint(0, sample_rate * 3)) |
|
|
|
signal = synth.get_melody(par_list, onsets) |
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
multinote_data[i] = amp[:512, :256] |
|
if write_spec: |
|
write(path_name + f"/{i}.wav", synth.sample_rate, signal) |
|
plot_log_spectrogram(signal, path=path_name + f"/mul_{i}.png", frame_length=frame_length, |
|
frame_step=frame_step) |
|
|
|
single_par = par_list[np.argmin(onsets)] |
|
single_par["duration"] = 3.0 |
|
single_par["pitch"] = 52 |
|
signal = synth.get_melody([single_par], [0]) |
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
single_data[i] = amp[:512, :256] |
|
if write_spec: |
|
write(path_name + f"/{i}.wav", synth.sample_rate, signal) |
|
plot_log_spectrogram(signal, path=path_name + f"/single_{i}.png", frame_length=frame_length, |
|
frame_step=frame_step) |
|
print(f"Generating dataset over, {n} samples generated!") |
|
return multinote_data, single_data |
|
|
|
|
|
def generate_DANN_dataset(n: int, path_name="./data/data_DANN", write_spec=False): |
|
"""Generate the synthetic dataset for adversarial training.""" |
|
if Path(path_name).exists(): |
|
shutil.rmtree(path_name) |
|
|
|
Path(path_name).mkdir(parents=True, exist_ok=True) |
|
print("Generating dataset...") |
|
|
|
multinote_data = np.ones((n, 512, 256)) |
|
single_data = np.ones((n, 512, 256)) |
|
for i in tqdm(range(n)): |
|
par_list = [] |
|
n_notes = np.random.randint(1, 5) |
|
onsets = [] |
|
for j in range(n_notes): |
|
parameter_values = [param.generate() for param in param_descriptions] |
|
parameter_values_raw = {param.name: param.value for param in parameter_values} |
|
parameter_values_raw["pitch_mod_depth"] = 0.0 |
|
par_list.append(parameter_values_raw) |
|
onsets.append(np.random.randint(0, sample_rate * 3)) |
|
|
|
signal = synth.get_melody(par_list, onsets) |
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
multinote_data[i] = amp[:512, :256] |
|
if write_spec: |
|
write(path_name + f"/{i}.wav", synth.sample_rate, signal) |
|
plot_log_spectrogram(signal, path=path_name + f"/mul_{i}.png", frame_length=frame_length, |
|
frame_step=frame_step) |
|
|
|
single_par = par_list[np.argmin(onsets)] |
|
single_par["duration"] = 3.0 |
|
single_par["pitch"] = 52 |
|
signal = synth.get_melody([single_par], [0]) |
|
stft = librosa.stft(signal, n_fft=1024, hop_length=256, win_length=1024) |
|
amp = np.square(np.real(stft)) + np.square(np.imag(stft)) |
|
single_data[i] = amp[:512, :256] |
|
if write_spec: |
|
write(path_name + f"/{i}.wav", synth.sample_rate, signal) |
|
plot_log_spectrogram(signal, path=path_name + f"/single_{i}.png", frame_length=frame_length, |
|
frame_step=frame_step) |
|
print(f"Generating dataset over, {n} samples generated!") |
|
return multinote_data, single_data |
|
|