WeixuanYuan commited on
Commit
7328fd9
1 Parent(s): 692f6ab

Upload VAE_torchV.py

Browse files
Files changed (1) hide show
  1. model/VAE_torchV.py +171 -0
model/VAE_torchV.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ class ChannelAttention(nn.Module):
6
+ def __init__(self, in_planes, ratio=16):
7
+ super(ChannelAttention, self).__init__()
8
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
9
+ self.max_pool = nn.AdaptiveMaxPool2d(1)
10
+
11
+ self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
12
+ self.relu1 = nn.ReLU()
13
+ self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
14
+
15
+ self.sigmoid = nn.Sigmoid()
16
+
17
+ def forward(self, x):
18
+ avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
19
+ max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
20
+ y = avg_out + max_out
21
+ y = self.sigmoid(y)
22
+
23
+ return x * y.expand_as(x)
24
+
25
+
26
+ class ResCell(nn.Module):
27
+ def __init__(self, input_channel, output_channel, stride=1):
28
+ super(ResCell, self).__init__()
29
+
30
+ self.stride = stride
31
+ self.input_channel = input_channel
32
+ self.output_channel = output_channel
33
+
34
+ if self.stride == -1:
35
+ output_size = ()
36
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
37
+ self.skip = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=1, stride=1, padding=0)
38
+ self.conv1 = nn.ConvTranspose2d(self.input_channel, self.output_channel, kernel_size=5, stride=2, padding=2, output_padding=1)
39
+ self.conv2 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=5, padding=2)
40
+
41
+ elif self.stride == 2:
42
+ self.skip = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=1, stride=2, padding=0)
43
+ self.conv1 = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=5, stride=self.stride, padding=2)
44
+ self.conv2 = nn.Conv2d(self.output_channel, self.output_channel, kernel_size=5, padding=2)
45
+
46
+ else:
47
+ self.conv1 = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=5, stride=self.stride, padding=2)
48
+ self.conv2 = nn.Conv2d(self.output_channel, self.output_channel, kernel_size=5, padding=2)
49
+
50
+ self.bn1 = nn.BatchNorm2d(self.output_channel)
51
+ self.bn2 = nn.BatchNorm2d(self.output_channel)
52
+
53
+ # Please replace `CBAM` with the actual module and parameters
54
+ self.cbam = ChannelAttention(self.output_channel)
55
+
56
+ def forward(self, x):
57
+ if self.stride == -1:
58
+ upsampled_x = self.upsample(x)
59
+ skip = self.skip(upsampled_x)
60
+ x = F.elu(self.bn1(self.conv1(x)))
61
+ x = self.conv2(x)
62
+ elif self.stride == 2:
63
+ skip = self.skip(x)
64
+ x = F.elu(self.bn1(self.conv1(x)))
65
+ x = self.conv2(x)
66
+ else:
67
+ skip = x
68
+ x = F.elu(self.bn1(self.conv1(x)))
69
+ x = self.conv2(x)
70
+
71
+ x = self.bn2(x)
72
+ x = self.cbam(x)
73
+ x = x + skip
74
+ x = F.elu(x)
75
+
76
+ return x
77
+
78
+
79
+ class ResBlock(nn.Module):
80
+ def __init__(self, input_channel, output_channel, upsample=False, n_cells=2):
81
+ super(ResBlock, self).__init__()
82
+
83
+ stride = -1 if upsample else 2
84
+ self.cells = nn.ModuleList([ResCell(input_channel, output_channel, stride=stride)])
85
+
86
+ for _ in range(n_cells - 1):
87
+ self.cells.append(ResCell(input_channel, output_channel, stride=1))
88
+
89
+ def forward(self, x):
90
+ for cell in self.cells:
91
+ x = cell(x)
92
+ return x
93
+
94
+
95
+ class Encoder(nn.Module):
96
+ def __init__(self, input_shape, timbre_dim, N2=0, channel_sizes=None):
97
+ super(Encoder, self).__init__()
98
+
99
+ if channel_sizes is None:
100
+ channel_sizes = [32, 64, 64, 96, 96, 128, 160, 216]
101
+
102
+ self.input_shape = input_shape
103
+ self.timbre_dim = timbre_dim
104
+ self.blocks = nn.ModuleList()
105
+
106
+ self.blocks.append(ResBlock(input_channel=1, output_channel=channel_sizes[0], upsample=False, n_cells=1))
107
+ input_channel = channel_sizes[0]
108
+
109
+ for c in channel_sizes[1:]:
110
+ self.blocks.append(ResBlock(input_channel=input_channel, output_channel=c, upsample=False, n_cells=1 + N2))
111
+ input_channel = c
112
+
113
+ self.flatten = nn.Flatten()
114
+ self.mu_timbre = nn.Linear(self._get_flattened_dim(), timbre_dim)
115
+ self.sigma_timbre = nn.Linear(self._get_flattened_dim(), timbre_dim)
116
+
117
+ def _get_flattened_dim(self):
118
+ x = torch.zeros((1,) + self.input_shape)
119
+ for block in self.blocks:
120
+ x = block(x)
121
+ x = self.flatten(x)
122
+ return x.shape[1]
123
+
124
+ def reparameterize(self, mu, logvar):
125
+ std = torch.exp(0.5*logvar)
126
+ eps = torch.randn_like(std)
127
+ return mu + eps*std
128
+
129
+ def forward(self, x):
130
+ for block in self.blocks:
131
+ x = block(x)
132
+
133
+ x = self.flatten(x)
134
+ mu = self.mu_timbre(x)
135
+ logvar = self.sigma_timbre(x)
136
+ latent_vector = self.reparameterize(mu, logvar)
137
+
138
+ # kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=1)
139
+ # kl_loss = torch.mean(kl_loss)
140
+
141
+ return mu, logvar, latent_vector
142
+
143
+
144
+ class Decoder(nn.Module):
145
+ def __init__(self, timbre_dim, N2=0, N3=8, channel_sizes=None):
146
+ super(Decoder, self).__init__()
147
+
148
+ if channel_sizes is None:
149
+ channel_sizes = [32, 64, 64, 96, 96, 128, 160, 216]
150
+
151
+ self.conv_shape = [-1, channel_sizes[-1], 2 ** (9 - N3), 2 ** (8 - N3)]
152
+
153
+ self.dense = nn.Linear(timbre_dim, self.conv_shape[1] * self.conv_shape[2] * self.conv_shape[3])
154
+ self.blocks = nn.ModuleList()
155
+
156
+ input_channel = channel_sizes[-1]
157
+ for c in list(reversed(channel_sizes))[1:]:
158
+ self.blocks.append(ResBlock(input_channel=input_channel, output_channel=c, upsample=True, n_cells=1 + N2))
159
+ input_channel = c
160
+
161
+ self.decoder_conv = nn.ConvTranspose2d(channel_sizes[0], 1, kernel_size=5, stride=2, padding=2, output_padding=1)
162
+
163
+ def forward(self, x):
164
+ x = F.elu(self.dense(x))
165
+ x = x.view(-1, self.conv_shape[1], self.conv_shape[2], self.conv_shape[3])
166
+ for block in self.blocks:
167
+ x = block(x)
168
+
169
+ x = self.decoder_conv(x)
170
+ x = torch.sigmoid(x)
171
+ return x