XavierJiezou commited on
Commit
13fc469
1 Parent(s): b589012

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -35,6 +35,60 @@ This dataset card aims to describe the datasets used in the Cloud-Adapter, a col
35
 
36
  ## Uses
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ## Dataset Structure
39
 
40
  The dataset contains the following splits:
 
35
 
36
  ## Uses
37
 
38
+ ```python
39
+ # Step 1: Install the datasets library
40
+ # Ensure you have the `datasets` library installed
41
+ # You can install it using pip if it's not already installed:
42
+ # pip install datasets
43
+
44
+ from datasets import load_dataset
45
+ from PIL import Image
46
+
47
+ # Step 2: Load the Cloud-Adapter dataset
48
+ # Replace "XavierJiezou/Cloud-Adapter" with the dataset repository name on Hugging Face
49
+ dataset = load_dataset("XavierJiezou/Cloud-Adapter")
50
+
51
+ # Step 3: Explore the dataset splits
52
+ # The dataset contains three splits: "train", "val", and "test"
53
+ print("Available splits:", dataset.keys())
54
+
55
+ # Step 4: Access individual examples
56
+ # Each example contains an image and a corresponding annotation (segmentation mask)
57
+ train_data = dataset["train"]
58
+
59
+ # View the number of samples in the training set
60
+ print("Number of training samples:", len(train_data))
61
+
62
+ # Step 5: Access a single data sample
63
+ # Each data sample has two keys: "image" and "annotation"
64
+ sample = train_data[0]
65
+
66
+ # Step 6: Display the image and annotation
67
+ # Use PIL to open and display the image and annotation
68
+ image = sample["image"]
69
+ annotation = sample["annotation"]
70
+
71
+ # Display the image
72
+ print("Displaying the image...")
73
+ image.show()
74
+
75
+ # Display the annotation
76
+ print("Displaying the segmentation mask...")
77
+ annotation.show()
78
+
79
+ # Step 7: Use in a machine learning pipeline
80
+ # You can integrate this dataset into your ML pipeline by iterating over the splits
81
+ for sample in train_data:
82
+ image = sample["image"]
83
+ annotation = sample["annotation"]
84
+ # Process or feed `image` and `annotation` into your ML model here
85
+
86
+ # Additional Info: Dataset splits
87
+ # - dataset["train"]: Training split
88
+ # - dataset["val"]: Validation split
89
+ # - dataset["test"]: Testing split
90
+ ```
91
+
92
  ## Dataset Structure
93
 
94
  The dataset contains the following splits: