File size: 7,221 Bytes
3d2c0b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The lingual SemEval2014 Task5 Reviews Corpus"""
import datasets
_CITATION = """\
@article{2014SemEval,
title={SemEval-2014 Task 4: Aspect Based Sentiment Analysis},
author={ Pontiki, M. and D Galanis and Pavlopoulos, J. and Papageorgiou, H. and Manandhar, S. },
journal={Proceedings of International Workshop on Semantic Evaluation at},
year={2014},
}
"""
_LICENSE = """\
Please click on the homepage URL for license details.
"""
_DESCRIPTION = """\
A collection of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis.
"""
_CONFIG = [
# restaurants domain
"restaurants",
# laptops domain
"laptops",
]
_VERSION = "0.0.1"
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2014Task4/{split}/{domain}_{split}.xml"
class SemEval2014Config(datasets.BuilderConfig):
"""BuilderConfig for SemEval2014Config."""
def __init__(self, _CONFIG, **kwargs):
super(SemEval2014Config, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
self.configs = _CONFIG
class SemEval2014(datasets.GeneratorBasedBuilder):
"""The lingual Amazon Reviews Corpus"""
BUILDER_CONFIGS = [
SemEval2014Config(
name="All",
_CONFIG=_CONFIG,
description="A collection of SemEval2014 specifically designed to aid research in lingual Aspect Based Sentiment Analysis.",
)
] + [
SemEval2014Config(
name=config,
_CONFIG=[config],
description=f"{config} of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis",
)
for config in _CONFIG
]
BUILDER_CONFIG_CLASS = SemEval2014Config
DEFAULT_CONFIG_NAME = "All"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{'text': datasets.Value(dtype='string'),
'aspectTerms': [
{'from': datasets.Value(dtype='string'),
'polarity': datasets.Value(dtype='string'),
'term': datasets.Value(dtype='string'),
'to': datasets.Value(dtype='string')}
],
'aspectCategories': [
{'category': datasets.Value(dtype='string'),
'polarity': datasets.Value(dtype='string')}
],
'domain': datasets.Value(dtype='string'),
'sentenceId': datasets.Value(dtype='string')
}
),
supervised_keys=None,
license=_LICENSE,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_urls = [_DOWNLOAD_URL.format(split="train", domain=config) for config in self.config.configs]
dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config) for config in self.config.configs]
test_urls = [_DOWNLOAD_URL.format(split="test", domain=config) for config in self.config.configs]
train_paths = dl_manager.download_and_extract(train_urls)
dev_paths = dl_manager.download_and_extract(dev_urls)
test_paths = dl_manager.download_and_extract(test_urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "domain_list": self.config.configs}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "domain_list": self.config.configs}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "domain_list": self.config.configs}),
]
def _generate_examples(self, file_paths, domain_list):
row_count = 0
assert len(file_paths)==len(domain_list)
for i in range(len(file_paths)):
file_path, domain = file_paths[i], domain_list[i]
semEvalDataset = SemEvalXMLDataset(file_path, domain)
for example in semEvalDataset.SentenceWithOpinions:
yield row_count, example
row_count += 1
from xml.dom.minidom import parse
class SemEvalXMLDataset():
def __init__(self, file_name, domain):
# 获得SentenceWithOpinions,一个List包含(reviewId, sentenceId, text, Opinions)
self.SentenceWithOpinions = []
self.xml_path = file_name
self.sentenceXmlList = parse(self.xml_path).getElementsByTagName('sentence')
for sentenceXml in self.sentenceXmlList:
sentenceId = sentenceXml.getAttribute("id")
if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1:
# skip no reviews part
continue
text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue
aspectTermsXLMList = sentenceXml.getElementsByTagName("aspectTerm")
aspectTerms = []
for opinionXml in aspectTermsXLMList:
# some text maybe have no opinion
term = opinionXml.getAttribute("term")
polarity = opinionXml.getAttribute("polarity")
from_ = opinionXml.getAttribute("from")
to = opinionXml.getAttribute("to")
aspectTermDict = {
"term": term,
"polarity": polarity,
"from": from_,
"to": to
}
aspectTerms.append(aspectTermDict)
# 从小到大排序
aspectTerms.sort(key=lambda x: x["from"])
aspectCategoriesXmlList = sentenceXml.getElementsByTagName("aspectCategory")
aspectCategories = []
for aspectCategoryXml in aspectCategoriesXmlList:
category = aspectCategoryXml.getAttribute("category")
polarity = aspectCategoryXml.getAttribute("polarity")
aspectCategoryDict = {
"category": category,
"polarity": polarity
}
aspectCategories.append(aspectCategoryDict)
self.SentenceWithOpinions.append({
"text": text,
"aspectTerms": aspectTerms,
"aspectCategories": aspectCategories,
"domain": domain,
"sentenceId": sentenceId
}
) |