|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The lingual SemEval2014 Task5 Reviews Corpus""" |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@article{2014SemEval, |
|
title={SemEval-2014 Task 4: Aspect Based Sentiment Analysis}, |
|
author={ Pontiki, M. and D Galanis and Pavlopoulos, J. and Papageorgiou, H. and Manandhar, S. }, |
|
journal={Proceedings of International Workshop on Semantic Evaluation at}, |
|
year={2014}, |
|
} |
|
""" |
|
|
|
_LICENSE = """\ |
|
Please click on the homepage URL for license details. |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A collection of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis. |
|
""" |
|
|
|
_CONFIG = [ |
|
|
|
|
|
"restaurants", |
|
|
|
"laptops", |
|
] |
|
|
|
_VERSION = "0.0.1" |
|
|
|
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools" |
|
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2014Task4/{split}/{domain}_{split}.xml" |
|
|
|
|
|
class SemEval2014Config(datasets.BuilderConfig): |
|
"""BuilderConfig for SemEval2014Config.""" |
|
|
|
def __init__(self, _CONFIG, **kwargs): |
|
super(SemEval2014Config, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs), |
|
self.configs = _CONFIG |
|
|
|
|
|
class SemEval2014(datasets.GeneratorBasedBuilder): |
|
"""The lingual Amazon Reviews Corpus""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SemEval2014Config( |
|
name="All", |
|
_CONFIG=_CONFIG, |
|
description="A collection of SemEval2014 specifically designed to aid research in lingual Aspect Based Sentiment Analysis.", |
|
) |
|
] + [ |
|
SemEval2014Config( |
|
name=config, |
|
_CONFIG=[config], |
|
description=f"{config} of SemEval2014 specifically designed to aid research in Aspect Based Sentiment Analysis", |
|
) |
|
for config in _CONFIG |
|
] |
|
|
|
BUILDER_CONFIG_CLASS = SemEval2014Config |
|
DEFAULT_CONFIG_NAME = "All" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{'text': datasets.Value(dtype='string'), |
|
'aspectTerms': [ |
|
{'from': datasets.Value(dtype='string'), |
|
'polarity': datasets.Value(dtype='string'), |
|
'term': datasets.Value(dtype='string'), |
|
'to': datasets.Value(dtype='string')} |
|
], |
|
'aspectCategories': [ |
|
{'category': datasets.Value(dtype='string'), |
|
'polarity': datasets.Value(dtype='string')} |
|
], |
|
'domain': datasets.Value(dtype='string'), |
|
'sentenceId': datasets.Value(dtype='string') |
|
} |
|
), |
|
supervised_keys=None, |
|
license=_LICENSE, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
train_urls = [_DOWNLOAD_URL.format(split="train", domain=config) for config in self.config.configs] |
|
dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config) for config in self.config.configs] |
|
test_urls = [_DOWNLOAD_URL.format(split="test", domain=config) for config in self.config.configs] |
|
|
|
train_paths = dl_manager.download_and_extract(train_urls) |
|
dev_paths = dl_manager.download_and_extract(dev_urls) |
|
test_paths = dl_manager.download_and_extract(test_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "domain_list": self.config.configs}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "domain_list": self.config.configs}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "domain_list": self.config.configs}), |
|
] |
|
|
|
def _generate_examples(self, file_paths, domain_list): |
|
row_count = 0 |
|
assert len(file_paths)==len(domain_list) |
|
|
|
for i in range(len(file_paths)): |
|
file_path, domain = file_paths[i], domain_list[i] |
|
semEvalDataset = SemEvalXMLDataset(file_path, domain) |
|
|
|
for example in semEvalDataset.SentenceWithOpinions: |
|
yield row_count, example |
|
row_count += 1 |
|
|
|
from xml.dom.minidom import parse |
|
|
|
class SemEvalXMLDataset(): |
|
def __init__(self, file_name, domain): |
|
|
|
|
|
self.SentenceWithOpinions = [] |
|
self.xml_path = file_name |
|
|
|
self.sentenceXmlList = parse(self.xml_path).getElementsByTagName('sentence') |
|
|
|
for sentenceXml in self.sentenceXmlList: |
|
|
|
sentenceId = sentenceXml.getAttribute("id") |
|
if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1: |
|
|
|
continue |
|
text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue |
|
|
|
aspectTermsXLMList = sentenceXml.getElementsByTagName("aspectTerm") |
|
aspectTerms = [] |
|
for opinionXml in aspectTermsXLMList: |
|
|
|
term = opinionXml.getAttribute("term") |
|
polarity = opinionXml.getAttribute("polarity") |
|
from_ = opinionXml.getAttribute("from") |
|
to = opinionXml.getAttribute("to") |
|
aspectTermDict = { |
|
"term": term, |
|
"polarity": polarity, |
|
"from": from_, |
|
"to": to |
|
} |
|
aspectTerms.append(aspectTermDict) |
|
|
|
|
|
aspectTerms.sort(key=lambda x: x["from"]) |
|
|
|
aspectCategoriesXmlList = sentenceXml.getElementsByTagName("aspectCategory") |
|
aspectCategories = [] |
|
for aspectCategoryXml in aspectCategoriesXmlList: |
|
category = aspectCategoryXml.getAttribute("category") |
|
polarity = aspectCategoryXml.getAttribute("polarity") |
|
aspectCategoryDict = { |
|
"category": category, |
|
"polarity": polarity |
|
} |
|
aspectCategories.append(aspectCategoryDict) |
|
|
|
self.SentenceWithOpinions.append({ |
|
"text": text, |
|
"aspectTerms": aspectTerms, |
|
"aspectCategories": aspectCategories, |
|
"domain": domain, |
|
"sentenceId": sentenceId |
|
} |
|
) |