abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
1
00:00:01,570 --> 00:00:06,970
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจุนุฉ
2
00:00:06,970 --> 00:00:11,750
ู…ุณุงู‚ ุบูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ
3
00:00:11,750 --> 00:00:18,030
ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ technology ุงู„ุขู…ุนู„ูˆู…ุงุช ู‚ุณู… ุงู„ุญูˆุณุจุฉ
4
00:00:18,030 --> 00:00:22,090
ุงู„ู…ุชู†ู‚ู„ุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ู†ุณุชูƒู…ู„ ููŠู‡ุง
5
00:00:22,090 --> 00:00:26,110
ุงู„ุญุฏูŠุซ ุนู† ุงู„ู€ greatest common divisor ุฃูˆ ุงู„ุนุงู…ู„
6
00:00:26,110 --> 00:00:31,460
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุนุฏุฏูŠู† ุงู„ูŠูˆู… ุจุฏู†ุง ู†ุนุฑู ูƒูŠู ู†ูˆุฌุฏ
7
00:00:31,460 --> 00:00:35,420
ุงู„ู€ greatest common divisor ุจุงุณุชุฎุฏุงู… ุญุงุฌุฉ ุงุณู…ู‡ุง
8
00:00:35,420 --> 00:00:43,560
ุงู„ู€ prime factorization ุฃูˆ ุนู† ุทุฑูŠู‚ ุชุญู„ูŠู„ ุงู„ุนุฏุฏ
9
00:00:43,560 --> 00:00:50,080
ุฅู„ู‰ ุนูˆุงู…ู„ู‡ ุงู„ุฃูˆู„ูŠุฉ ุนู† ุทุฑูŠู‚ ุงู„ุนูˆุงู…ู„ ุงู„ุฃูˆู„ูŠุฉ ูƒูŠู
10
00:00:50,080 --> 00:00:54,080
ู†ุฌุฏ ุงู„ู€ greatest common divisor ูƒู…ุง ูŠู„ูŠ ุชุงุจุนูˆุง ู…ุนุงูŠุง
11
00:00:54,080 --> 00:00:58,060
ุงู„ุขู† ู†ูุชุฑุถ ุฃู† ุงู„ู€ prime factorization ู„ู„ุนุฏุฏ a ูˆุงู„ู€ b
12
00:00:58,060 --> 00:01:01,400
ู‡ูŠ ูƒู…ุง ูŠู„ูŠ ู…ุงุฐุง ูŠุนู†ูŠ ุงู„ู€ prime factorization ูŠุนู†ูŠ
13
00:01:01,400 --> 00:01:05,180
ู†ุญู„ู„ ุงู„ุนุฏุฏ a ุฅู„ู‰ ุนูˆุงู…ู„ู‡ ุงู„ุฃูˆู„ูŠุฉ ูŠุทู„ุน ุงู„ู„ูŠ ุนู†ุฏูŠ
14
00:01:05,180 --> 00:01:11,580
ุงู„ุนุฏุฏ a ุนุจุงุฑุฉ ุนู† b1<sup>a1</sup> b2<sup>a2</sup> ... b<sub>n</sub><sup>a<sub>n</sub></sup> ูˆุจู†ุฃู† ุญู„ู„ู†ุง b ูŠุทู„ุน
15
00:01:11,580 --> 00:01:15,500
ุนู„ู‰ ุตูˆุฑุฉ b<sub>1</sub><sup>b<sub>1</sub></sup> b<sub>2</sub><sup>b<sub>2</sub></sup> ... b<sub>n</sub><sup>b<sub>n</sub></sup>
16
00:01:15,500 --> 00:01:19,860
ุญูŠุซ ุงู„ู€ a<sub>1</sub> ูˆุงู„ู€ b<sub>1</sub> ูˆุงู„ู€ b<sub> </sub>
17
00:01:19,860 --> 00:01:22,900
<sub>2</sub> ูˆุงู„ู€ b<sub>n</sub> ูˆุงู„ู€ a<sub>1</sub> ูˆุงู„ู€ a<sub>2</sub> ูˆุงู„ู€ a<sub>n</sub>
18
00:01:22,900 --> 00:01:27,620
ุนุจุงุฑุฉ ุนู† integers ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ุจูŠู†ู…ุง ุงู„ู€ b<sub> </sub>
19
00:01:27,620 --> 00:01:31,020
<sub>1</sub> ูˆุงู„ู€ b<sub>n</sub> ุนุจุงุฑุฉ ุนู† ุงู„ู€ primes ู„ุฃู† ุจุนุฏ ู…ุง ุญู„ู„ู†ุง
20
00:01:31,020 --> 00:01:34,260
ู‡ู†ุง ุนู„ู‰ ุงู„ุตูˆุฑุฉ ู‡ุฐู‡ ุจูŠูƒูˆู† ุงู„ู€ greatest common divisor
21
00:01:34,260 --> 00:01:39,020
ุจูŠู† ุงู„ู€ a ูˆุงู„ู€ b ู‡ูˆ ุนุจุงุฑุฉ ุนู† b<sub>1</sub><sup>ุงู„ู€ minimum ุจูŠู†</sup>
22
00:01:39,020 --> 00:01:47,800
a<sub>1</sub> ูˆุงู„ู€ b<sub>1</sub> ุงู„ู€ b<sub>2</sub><sup>ุงู„ู€ minimum ุจูŠู† a<sub>2</sub> ูˆุงู„ู€ b<sub>2</sub></sup> ู„ู…ุง ุฃุตู„ ุนู†ุฏ
23
00:01:47,800 --> 00:01:53,840
ุงู„ู€ b<sub>n</sub><sup>ุงู„ู€ minimum ุจูŠู† a<sub>n</sub> ูˆุงู„ู€ b<sub>n</sub></sup> ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุจู†ูƒูˆู†
24
00:01:53,840 --> 00:01:58,420
ุงุญู†ุง ุญู„ู„ู†ุง ุฃูˆ ูˆุฌุฏู†ุง ุงู„ู€ greatest common divisor ุฃูˆ
25
00:01:58,420 --> 00:02:03,360
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ุนุฏุฏูŠู† a ูˆุงู„ู€ b ุจู‡ุฐู‡
26
00:02:03,360 --> 00:02:08,000
ุงู„ุทุฑูŠู‚ุฉ ูˆุงู„ุขู† ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ู†ุงุฎุฏ example ุนู…ู„ูŠ ุนู„ู‰
27
00:02:08,000 --> 00:02:12,640
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ู†ุฌูŠ ุงู„ุขู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุนู…ู„ูŠุง ู„
28
00:02:12,640 --> 00:02:13,880
GMS ุดูˆููˆุง
29
00:02:20,500 --> 00:02:24,240
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ู‡ูˆ greatest common divisor
30
00:02:29,620 --> 00:02:35,840
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ 120 ูˆุงู„ู€ 500 ุฑุงุญ ู†ูˆุฌุฏ
31
00:02:35,840 --> 00:02:39,480
ุงู„ุฃุนู„ู‰ ุฅูŠุด ุจูŠุดุชุบู„ูˆุงุŸ ุจุงู‚ูŠ ุงู„ู€ 120 ุจูŠุณุชุฎุฏุน ุฑุงุชูˆุฑุฉ
32
00:02:39,480 --> 00:02:43,440
ุนุงู…ู„ู‡ุง ุงู„ุฃูˆู„ูŠุฉ ุนู„ู‰ ุงุซู†ูŠู† ุจุงู‚ูŠ ุงู„ู€ 60 ูŠุทู„ุน
33
00:02:43,440 --> 00:02:47,120
ุนู„ู‰ ุงุซู†ูŠู† ูŠุทู„ุน ุงู„ู€ 30 ุนู„ู‰ ุงุซู†ูŠู† ูŠุทู„ุน ุงู„ู€ 15 ุงู„ู€ 15
34
00:02:47,120 --> 00:02:54,050
ุนู„ู‰ ุซู„ุงุซุฉ ูŠุทู„ุน ุฎู…ุณุฉ ูˆู‡ูŠ ุฎู…ุณุฉ ูุจูŠุตูŠุฑ ุงู„ุชุญู„ูŠู„ ุฅู„ู‰
35
00:02:54,050 --> 00:02:58,310
120 ุฅู„ู‰ primes ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ููŠ ุฎู…ุณุฉ
36
00:02:58,310 --> 00:03:01,850
ููŠ ุฎู…ุณุฉ ู†ูุณ ุงู„ุดูŠุก ุจุงู‚ูŠ ุงู„ู€ 500 ุจุฑุบู… ุชุญู„ูŠู„ู‡ุง
37
00:03:01,850 --> 00:03:05,730
ุงู„ุนูˆุงู…ู„ ุงู„ุฃูˆู„ูŠุฉ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุจู„ุงู‚ูŠู‡ุง ุนุจุงุฑุฉ ุนู†
38
00:03:05,730 --> 00:03:08,070
ุงู„ุฃูˆู„ ุงุซู†ูŠู† ููŠ 250 ุจุนุฏูŠู† ุฅุฐุง ููŠู‡ุง ุงุซู†ูŠู†
39
00:03:08,070 --> 00:03:12,110
ุซู„ุงุซุฉ ุนู„ู‰ ุฎู…ุณุฉ ุนู„ู‰ ุฎู…ุณุฉ ูˆู‡ูƒุฐุง ูŠุทู„ุน ุนู†ุฏูŠ ุงุซู†ูŠู† ุชุฑุจูŠุน
40
00:03:12,110 --> 00:03:16,060
ููŠ ุฎู…ุณุฉ ุชูƒุนูŠุจ ุฅู† ูƒุชุจุช ุนู„ู‰ ุงู„ุตูˆุฑุฉ ู‡ุฐู‡ ุงู„ู€ prime
41
00:03:16,060 --> 00:03:19,380
factorization ุงู„ู€ prime factorization ุงู„ู€ prime factorization
42
00:03:19,380 --> 00:03:19,880
ุงู„ู€ prime factorization ุงู„ู€ prime factorization ุงู„ู€ prime
43
00:03:19,880 --> 00:03:21,880
factorization ุงู„ู€ prime factorization ุงู„ู€ prime factorization
44
00:03:21,880 --> 00:03:24,460
ุงู„ู€ prime factorization ุงู„ู€ prime factorization ุงู„ู€ prime
45
00:03:24,460 --> 00:03:28,220
factorization ุงู„ู€ prime factorization ุงู„ู€ prime factorization
46
00:03:28,220 --> 00:03:30,380
ุงู„ู€ prime factorization ุงู„ู€ prime factorization ุงู„ู€ prime
47
00:03:30,380 --> 00:03:33,480
factorization ุงู„ู€ prime ูู‡ูŠ ุงู„ู€ minimum ุจูŠู† ุซู„ุงุซุฉ ูˆุงุซู†ูŠู†
48
00:03:33,480 --> 00:03:38,120
ูˆู‚ุต ู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ููŠุด ุซู„ุงุซุฉ ูŠุนู†ูŠ ูˆูƒุฃู†ู‡ ุซู„ุงุซุฉ ู‚ุต
49
00:03:38,120 --> 00:03:41,280
ุตูุฑ ู„ู…ุง ุซู„ุงุซุฉ ูˆุตูุฑ ูŠุนู†ูŠ ุจูˆุงุญุฏ ู„ู…ุง ูŠู†ุถุฑุจ ุจูˆุงุญุฏ ู‡ู†ุง
50
00:03:41,280 --> 00:03:44,720
ุซู„ุงุซุฉ ูˆุตูุฑ ู…ุด ู‡ูŠุฃุซุฑ ู‡ูŠุธู„ ุงู„ุนุฏุฏ ุฒูŠ ู…ุง ู‡ูˆ ูุจู†ูƒุชุจ
51
00:03:44,720 --> 00:03:47,100
ุซู„ุงุซุฉ ู‚ุต ุงู„ู€ minimum ูˆุงุญุฏ ูˆุตูุฑ
52
00:03:50,450 --> 00:03:54,050
ุงู„ู€ ุฎู…ุณุฉ ุงู„ู€ minimum ุจูŠู† ุงู„ุฃุณ ุงู„ู„ูŠ ุฃู†ุง ูˆุงู„ุฃุณ ุงู„ู„ูŠ
53
00:03:54,050 --> 00:03:58,450
ู‡ูˆ ูˆุงุญุฏ ูˆุซู„ุงุซุฉ ุจูŠุตูŠุฑ ุงู„ู€ minimum ุจูŠู† ุซู„ุงุซุฉ ูˆุงุซู†ูŠู†
54
00:03:58,450 --> 00:04:03,750
ูˆุงุญุฏ ุจูŠู† ุซู„ุงุซุฉ ูˆุงุซู†ูŠู† ุงุซู†ูŠู† ุจูŠุตูŠุฑ ุงุซู†ูŠู† ุฃุณ ุงุซู†ูŠู†
55
00:04:03,750 --> 00:04:07,390
ู…ุถุฑูˆุจุฉ ููŠ ุซู„ุงุซุฉ ู‚ุต ููŠ ุงู„ู€ minimum ุจูŠู† ูˆุงุญุฏ ูˆุตูุฑ ุงู„ู€
56
00:04:07,390 --> 00:04:10,590
minimum ุจูŠู† ูˆุงุญุฏ ูˆุตูุฑ ุทุจุนู‹ุง ุตูุฑ ุชุตุจุญ ุซู„ุงุซุฉ ู‚ุต ุตูุฑ
57
00:04:10,590 --> 00:04:13,390
ููŠ ุงู„ู€ ุงู„ุขู† ุงู„ู€ minimum ุจูŠู† ูˆุงุญุฏ ูˆุซู„ุงุซุฉ ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด
58
00:04:13,390 --> 00:04:17,510
ูˆุงุญุฏ ูุชุตุจุญ ุฎู…ุณุฉ ู‚ุต ูˆุงุญุฏ ุฅุฐุง ุจูŠุตูŠุฑ ุงู„ุฌูˆุงุจ ุนู†ุฏูŠ
59
00:04:17,510 --> 00:04:21,210
ุงุซู†ูŠู† ุชุฑุจูŠุน ูŠุนู†ูŠ ุฃุฑุจุนุฉ ุซู„ุงุซุฉ ู‚ุต ุตูุฑ ูŠุนู†ูŠ ูˆุงุญุฏ
60
00:04:21,210 --> 00:04:25,210
ุฃู‚ูˆู„ ู„ูƒู… ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ุนุงู…ู„ ุงู„ู€ greatest common divisor
61
00:04:25,540 --> 00:04:32,000
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ู„ูˆ ุฃู†ุง ู…ุง ุญุทูŠุชุด
62
00:04:32,000 --> 00:04:36,260
ุงู„ุซู„ุงุซุฉ ุจู†ูุน ูŠุนู†ูŠ ุงู„ุซู„ุงุซุฉ ู…ุด ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุฌู‡ุชูŠู†
63
00:04:36,260 --> 00:04:41,860
ุงู†ุณุงู‡ ูˆู…ุง ุชูƒุชุจู‡ุงุด ูˆู‡ุฐู‡ ู†ุดูŠู„ู‡ุง ุจู†ูุน ู„ุฃู†ู‡ ููŠ ุงู„ุขุฎุฑ
64
00:04:41,860 --> 00:04:45,380
ู‡ุชุทู„ุน ุซู„ุงุซุฉ ุฃู‚ู„ ุตูุฑ ุทูŠุจ ุงุซู†ูŠู† ุฃู‚ู„ ุฃุฑุจุนุฉ ููŠ ุฎู…ุณุฉ
65
00:04:45,380 --> 00:04:49,840
ุจุชุทู„ุน ู…ุฌุฏู‡ุด ูˆู…ู† ุนุดุฑูŠู† ู†ุฏูŠ ู„ู‡ุง ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ
66
00:04:49,840 --> 00:04:53,970
ู‡ูˆ ุฃูˆุฌุฏ ุงู„ู…ุถุงุนู ุงู„ู€ greatest common divisor ุจูŠู† ุงู„ู€
67
00:04:53,970 --> 00:05:01,690
2400 ูˆุงู„ู€ 6300 ุจุนุฏ ุงู„ู€ 2400 ุจุญู„ู„ู‡ุง ุนูˆุงู…ู„ู‡ุง
68
00:05:01,690 --> 00:05:06,990
ุงู„ุฃูˆู„ูŠุฉ ุจู„ุงู‚ูŠู‡ุง ุนุจุงุฑุฉ ุนู† ุงุซู†ูŠู† ุฃุณ ุฎู…ุณุฉ ููŠ ุซู„ุงุซุฉ ููŠ
69
00:05:06,990 --> 00:05:13,310
ุฎู…ุณุฉ ุชุฑุจูŠุน ูˆู‚ูˆู„ู†ุง ูƒูŠู ุจุงู„ุญู„ ุงู„ุขู† ุงู„ู€ 6300 ุจุญู„ู„ู‡ุง
70
00:05:13,310 --> 00:05:16,250
ุนูˆุงู…ู„ู‡ุง ุงู„ุฃูˆู„ูŠุฉ ุชุทู„ุน ุงุซู†ูŠู† ุชุฑุจูŠุน ุงุซู†ูŠู† ุชุฑุจูŠุน ููŠ
71
00:05:16,250 --> 00:05:21,040
ุซู„ุงุซุฉ ุชุฑุจูŠุน ููŠ ุฎู…ุณุฉ ุชุฑุจูŠุน ููŠ ุณุจุนุฉ ุงู„ุขู† ุนู„ู‰ ุทูˆู„ ุงู„ู€
72
00:05:21,040 --> 00:05:25,300
greatest common divisor ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ูˆุถูˆุน ุงู„ุนุงู…
73
00:05:25,300 --> 00:05:29,940
ู„ู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ู…ุงุฏุงู… ู‡ูŠ ุงู„ู€ ุชู…ุงู… ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู…ูˆุฌูˆุฏุฉ
74
00:05:29,940 --> 00:05:32,940
ู‡ู†ุง ุจูƒุชุจู‡ุง ุงุซู†ูŠู† ุงู„ู€ minimum ุฎู…ุณุฉ ูˆุงุซู†ูŠู† ุงู„ุซู„ุงุซุฉ
75
00:05:32,940 --> 00:05:35,900
ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุจูƒุชุจ ุซู„ุงุซุฉ ุงู„ู€ minimum ูˆุงุญุฏ ูˆ
76
00:05:35,900 --> 00:05:39,800
ุงุซู†ูŠู† ุงู„ุฎู…ุณุฉ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุฎู…ุณุฉ ุฃุณ
77
00:05:39,800 --> 00:05:42,700
ุงู„ู€ minimum ุงุซู†ูŠู† ูˆุงุซู†ูŠู† ู„ุฃู† ู‡ู†ุง ุงู„ุฃุณ ุงุซู†ูŠู† ูˆู‡ู†ุง ุงู„ุฃุณ
78
00:05:42,700 --> 00:05:46,800
ุงุซู†ูŠู† ุงู„ุณุจุนุฉ ู…ุด ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุฎู„ุงุต ูุงู†ุณุงู‡ุง ูŠุนู†ูŠ ู„ูˆ
79
00:05:46,800 --> 00:05:49,880
ุญุงุทูŠุชู‡ุง ุฒูŠ ุงู„ู„ูŠ ููˆู‚ ูˆุนู…ู„ุช ุงู„ู€ minimum ุจูŠู† ุงู„ุฃุณ ุตูุฑ ูˆ
80
00:05:49,880 --> 00:05:52,260
ุงู„ูˆุงุญุฏ ู…ุง ู‡ูˆ ู‡ูŠุทู„ุน ุตูุฑ ูŠุนู†ูŠ ู…ุนู†ุงุชู‡ ู‡ูŠุทู„ุน ูˆุงุญุฏ
81
00:05:52,260 --> 00:05:56,710
ุงู„ุฌูˆุงุจ ูˆุฏู‡ ุฎู„ุงุต ู„ูŠุด ุฃุบู„ุจ ุญุงู„ูŠ ุฅุฐุง ุจุฃุฎุฏ ู…ูŠู† ุงู„ู„ูŠ
82
00:05:56,710 --> 00:06:01,850
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุฌู‡ุชูŠู† ุงู„ุงุซู†ูŠู† ู‚ุต ุงู„ุฃุตุบุฑ ุจูŠุตูŠุฑ ุงุซู†ูŠู†
83
00:06:01,850 --> 00:06:05,270
ู‚ุต ุงุซู†ูŠู† ุซู„ุงุซุฉ ู‚ุต ุงู„ุฃุตุบุฑ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุซู„ุงุซุฉ ู‚ุต
84
00:06:05,270 --> 00:06:08,250
ูˆุงุญุฏ ุงู„ุฎู…ุณุฉ ู‚ุต ุงุซู†ูŠู† ู‚ุต ุงู„ุฃุตุบุฑ ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ู‚ุต
85
00:06:08,250 --> 00:06:11,810
ุงุซู†ูŠู† ุงู„ุณุจุนุฉ ู…ุด ู…ูˆุฌูˆุฏุฉ ู„ุบูŠุฑู‡ุง ู†ุฎู„ุต ุจุงู†ุณุงู‡ุง ุจูŠุตูŠุฑ
86
00:06:11,810 --> 00:06:16,070
ู‡ุฐุง ู‡ูˆ ุงู„ู…ุถุงุนู ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ
87
00:06:16,070 --> 00:06:19,190
greatest common divisor ุจุงุฌูŠ ุจุญุณุจู‡ุง ุจู„ุงู‚ูŠู‡ุง ุฅูŠุด
88
00:06:19,190 --> 00:06:23,310
ุจุชุณุงูˆูŠ ุจุชุณุงูˆูŠ 300 ุฅุฐุง ุงู„ู…ูˆุถูˆุน ุณู‡ู„ ุทูŠุจ
89
00:06:29,490 --> 00:06:35,530
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุงู„ู„ูŠ ู†ุณู…ูŠู‡ least common
90
00:06:35,530 --> 00:06:43,710
multiple ุฃูˆ ุงู„ู…ุถุงุนู ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุตุบุฑ ุงู„ู…ุถุงุนู ุงู„ู…ุดุชุฑูƒ
91
00:06:43,710 --> 00:06:50,130
ุงู„ุฃู‚ู„ ุฃูˆ ุงู„ุฃุตุบุฑ ุฃูˆ ุงู„ุจุณูŠุท ุชุนุฑูŠูู‡ ูƒู…ุงู† ูŠุนู†ูŠ the
92
00:06:50,130 --> 00:06:53,230
least common multiple of the positive integers a
93
00:06:53,230 --> 00:06:57,090
and b is the smallest positive integer ู‡ูˆ ุนุจุงุฑุฉ ุนู†
94
00:06:57,090 --> 00:07:01,390
ุฃุตุบุฑ positive integer that is divisible by both a
95
00:07:01,390 --> 00:07:07,750
and b ูŠุนู†ูŠ ุฃุตุบุฑ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุงุนู .. ุฃุตุบุฑ ุงู„ู„ูŠ ู‡ูˆ
96
00:07:07,750 --> 00:07:13,010
positive integer ุงู„ู„ูŠ ู‡ูˆ divisible by a ูŠุนู†ูŠ ุงู„ู„ูŠ
97
00:07:13,010 --> 00:07:19,620
ู‡ูˆ a ุจุชู‚ุณู…ู‡ ูˆb ุจุชู‚ุณู…ู‡ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุจูŠูƒูˆู† ุฃุตุบุฑ
98
00:07:19,620 --> 00:07:26,760
ู…ุถุงุนู ู„ู„ู€ a ูˆู„ู„ู€ b ูˆุจู†ุฑู…ุฒู‡ ุจู€ lcm ุจุงู„ู€ a ูˆุงู„ู€ b ุฅุฐุง
99
00:07:26,760 --> 00:07:32,280
ุนุดุงู† ู†ุฑู…ุฒ ู„ุฃุตุบุฑ ู…ุถุงุนู ุจูŠู† a ูˆb ุจุฏู†ุง ู†ุฌูŠุจ ู…ุถุงุนูุงุช
100
00:07:32,280 --> 00:07:34,020
ุงู„ู€ a ูˆู…ุถุงุนูุงุช ุงู„ู€ b
101
00:07:39,360 --> 00:07:43,220
ู…ุถุงุนูุงุช ุงู„ู€ a ุนุฏุฏู‡ุง ู„ุง ู†ู‡ุงุฆูŠ ู…ุถุงุนูุงุช ุงู„ู€ b ุนุฏุฏู‡ุง
102
00:07:43,220 --> 00:07:49,020
ู„ุง ู†ู‡ุงุฆูŠ ุจู†ุฌูŠุจ ุฃูˆู„ู‡ุง ูˆุจู†ุดูˆู ูƒูŠู ู†ุณูˆูŠ ู„ู†ูˆุฌุฏ find least
103
00:07:49,020 --> 00:07:52,260
common multiple ุจูŠู† ุณุชุฉ ูˆุนุดุฑุฉ ู†ูˆุฌุฏ ุงู„ู…ุถุงุนู
104
00:07:52,260 --> 00:07:55,360
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุตุบุฑ ุจูŠู† ุงู„ุณุชุฉ ูˆุงู„ุนุดุฑุฉ ุฅูŠุด ุจูŠุฌูŠุจ ู†ูˆุฌุฏ
105
00:07:55,360 --> 00:07:59,620
ู„ุฃู† ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุจุฏุงุฆูŠุฉ ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ุฌุฏ ุงู„ู…ูˆุถูˆุน ุณู‡ู„
106
00:07:59,620 --> 00:08:04,760
ู…ุถุงุนูุงุช ุงู„ุณุชุฉ ุฅูŠุด ู…ุถุงุนูุงุช ุงู„ู…ุถุงุนูุงุช
107
00:08:23,040 --> 00:08:24,440
6 12 18 24 30 36 ...
108
00:08:34,800 --> 00:08:41,340
ู„ุฃู† ู…ู† ุงู„ู…ุถุงุนูุงุช ุงู„ู…ุดุชุฑูƒุฉ ู‡ูŠ 6 ู„ุง 12 ู„ุง 18 ู„ุง 20
109
00:08:41,340 --> 00:08:47,260
ู„ุง 24 ู„ุง 30 ู‡ุฐู‡ ูˆู‡ุฐู‡ ุฃูˆู„ ูˆุงุญุฏ ุจู†ุฌุฏ ู„ู‡ ู…ุดุชุฑูƒ
110
00:08:47,260 --> 00:08:50,440
ุจูŠู† ุงู„ู…ุถุงุนูุงุช ู‡ูˆ ุงู„ู„ูŠ ุจุณู…ูŠู‡ least common multiple
111
00:08:50,440 --> 00:08:55,430
ุจูŠู† 6 ูˆ10 ูŠุณุงูˆูŠ 30 ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนู†ูŠ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„
112
00:08:55,430 --> 00:08:59,790
ู…ุฑู‡ู‚ ุดูˆูŠุฉ ูุฅู† ุงุญู†ุง ู„ูˆ ูƒุงู†ุช ุงู„ุฃุนุฏุงุฏ ูƒุจูŠุฑุฉ ุจู†ู‚ุนุฏ ุฏู‡
113
00:08:59,790 --> 00:09:03,890
ู‡ูˆ ู†ุถุงุนู ุงู„ุนุฏุฏ ูˆู†ุถุนู ุงู„ุนุฏุฏ ูŠู…ูƒู† ูŠู„ุชู‚ูŠ ุจุนุฏ ุนุฏุฏ ูƒุจูŠุฑ
114
00:09:03,890 --> 00:09:08,450
ูุจุชุบู„ุจ ุฅุฐุง ููŠ ุทุฑูŠู‚ุฉ ุฃูƒูŠุฏ ุฃุณู‡ู„ ุงู„ู„ูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ ู…ุดุงุจู‡ุฉ
115
00:09:08,450 --> 00:09:13,030
ู„ุทุฑูŠู‚ุฉ ุงู„ู€ greatest common divisor ุงู„ู„ูŠ ู‡ูŠ ุนู† ุทุฑูŠู‚ ุงู„ู€
116
00:09:13,030 --> 00:09:17,370
prime factorization ุฅุฐุง ุงู„ู€ least common multiple
117
00:09:17,370 --> 00:09:20,950
can also be computed from the prime factorization
118
00:09:20,950 --> 00:09:24,110
ูŠุนู†ูŠ ู…ู…ูƒู† ุฅูŠุฌุงุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ least common multiple
119
00:09:24,110 --> 00:09:27,050
ุจูˆุงุณุทู‡ ุงู„ู€ prime factorization ู†ูˆุฌุฏ ุงู„ู€ prime
120
00:09:27,050 --> 00:09:29,330
factorization ู„ู„ุฃูˆู„ ูˆุงู„ู€ prime factorization
121
00:09:29,330 --> 00:09:32,310
ู„ู„ุซุงู†ูŠ ูˆุจู†ู‚ูˆู„ ุงู„ู€ least common multiple ุจูŠู† ุงู„ู€ a ูˆ
122
00:09:32,310 --> 00:09:36,310
ุงู„ู€ b ุจูŠุณุงูˆูŠ b<sub>1</sub> ู…ุด ุงู„ู€ minimum ุงู„ุขู† ุจูŠุฌูŠุจ ุงู„ู€
123
00:09:36,310 --> 00:09:40,910
maximum ุจูŠู† a<sub>1</sub> ูˆb<sub>1</sub> ูˆb<sub>2</sub> ุจูŠุณุงูˆูŠ ุงู„ู€
124
00:09:40,910 --> 00:09:44,540
maximum ุจูŠู† a<sub>2</sub> ูˆb<sub>2</sub> ูˆุงู„ู€ b<sub>m</sub> ุงู„ู€ maximum
125
00:09:44,540 --> 00:09:48,840
ุจูŠู† ุงู„ู€ a<sub>n</sub> ูˆุงู„ู€ b<sub>m</sub> ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ู‡ุฐุง ุงู„ูƒู„ุงู… ุนู…ู„ูŠู‹ุง ูˆ
126
00:09:48,840 --> 00:09:53,160
ุญุณุงุณุง ุนู„ูŠูƒู… ูƒู…ุงู† ุบูŠุฑ ู‡ุฐุง ุณุฃุณู‡ู„ ุนู„ูŠูƒู… ุงู„ุขู† ุงู„ 120
127
00:09:53,160 --> 00:09:57,860
ู‚ุจู„ ู‚ู„ูŠู„ ุญู„ู„ู†ุงู‡ุง 2ร—3 ููŠ ุซู„ุงุซุฉ ููŠ ุฎู…ุณุฉ ูˆุงู„ู€ 500
128
00:09:57,860 --> 00:10:00,220
ุงุชู†ูŠู† ุชุฑุจูŠุนูŠ ููŠ ุฎู…ุณุฉ ุชูƒุนูŠุจ ุงู„ุขู† ุงู„ู€ least common
129
00:10:00,220 --> 00:10:04,160
multiple ุจูŠู† ุงู„ู€ 120 ูˆุงู„ู€ 500 ุฅูŠุด ุจูŠุณุงูˆูŠุŸ ุงุชู†ูŠู†
130
00:10:04,160 --> 00:10:07,400
ุจู…ุณูƒ ูˆุงุญุฏุฉ ุงุชู†ูŠู† ุงู„ู€ maximum ุชู„ุงุชุฉ ูˆุงุชู†ูŠู† ุจุณ ู‡ู†ุง
131
00:10:07,400 --> 00:10:11,680
ู„ุงุฒู… ุชุญุทู‡ู… ูƒู„ู‡ู… ู…ุด ุฒูŠ ู‚ุจู„ ุฅู† ุงู„ู„ูŠ ู…ุง ููŠุด ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง
132
00:10:11,680 --> 00:10:15,880
ู…ุง ุจุญุทู‡ุงุด ู„ุฃ ู‡ู†ุง ู„ุงุฒู… ุชุญุทู‡ู… ูƒู„ู‡ู… ุงู„ุงุชู†ูŠู† ูˆุงู„ุชู„ุงุชุฉ
133
00:10:15,880 --> 00:10:18,840
ุญุชู‰ ู„ูˆ ู…ุด ุธุงู‡ุฑุฉ ู‡ู†ุง ูˆู„ูˆ ุฅูŠุด ุธุงู‡ุฑ ู‡ู†ุง ุจุฏูƒ ุชุญุทู‡
134
00:10:18,840 --> 00:10:22,690
ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ููŠ ุงู„ู€ maximum ุจูŠู† ุงู„ูˆุงุญุฏ ูˆุงู„ุงุซู†ูŠู†
135
00:10:22,690 --> 00:10:27,260
ุฎู…ุณุฉ ููŠ ุงู„ู€ maximum ุจูŠู† ุงู„ูˆุงุญุฏ ูˆุงู„ุชู„ุงุชุฉ ุงู„ุขู† ุงู„ุธุงู‡ุฑ ุบูŠุฑ
136
00:10:27,260 --> 00:10:29,780
ู‡ุฐู‡ ุงู„ุธุงู‡ุฑ ู‡ูŠ ุงู„ุธุงู‡ุฑ ุงู„ุชู„ุงุชุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„
137
00:10:29,780 --> 00:10:31,040
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
138
00:10:31,040 --> 00:10:32,520
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
139
00:10:32,520 --> 00:10:36,520
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
140
00:10:36,520 --> 00:10:40,240
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
141
00:10:40,240 --> 00:10:44,000
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
142
00:10:44,000 --> 00:10:44,020
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
143
00:10:44,020 --> 00:10:46,940
ุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ ูˆุงู„ุฎู…ุณุฉ
144
00:10:55,050 --> 00:10:59,250
ุทูŠุจ ููŠ ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ least common multiple
145
00:10:59,250 --> 00:11:02,550
ูˆุงู„ู€ greatest common divisor ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุจุชุฑูŠุญู†ุง
146
00:11:02,550 --> 00:11:07,810
ุจุชุฎู„ูŠู†ุง ู†ูˆุฌุฏ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ูˆุงู„ุชุงู†ูŠุฉ ู†ูˆุฌุฏู‡ุง ู…ู†ู‡ุง ูŠุนู†ูŠ
147
00:11:07,810 --> 00:11:13,530
ุงู„ุขู† ุงู„ุนู„ุงู‚ุฉ ุนุจุฑ ู†ุธุฑูŠุฉ ุฎุงู…ุณุฉ ุจุชู‚ูˆู„ ูƒู…ุงู„ูŠ let a and
148
00:11:13,530 --> 00:11:17,190
b positive integers then ู„ูˆ ูƒุงู†ุช a ูˆ b ุนุจุงุฑุฉ ุนู†
149
00:11:17,190 --> 00:11:21,430
positive integers then ุงู„ู€ a ููŠ ุงู„ู€ b ุจุชุณุงูˆูŠ ุงู„ู€ greatest
150
00:11:21,430 --> 00:11:24,770
common divisor ููŠ ุงู„ู€ a ูˆุงู„ู€ b ูˆููŠ ุงู„ู€ least common
151
00:11:24,770 --> 00:11:28,090
multiple ุจูŠู† ุงู„ู€ a ูˆุงู„ู€ b ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ุฏุงุฆู…ุง ุฏุงุฆู…ุง
152
00:11:28,090 --> 00:11:31,730
ุฏุงุฆู…ุง ู„ูˆ ุฌุจุช ุงู„ู€ least common multiple ูˆุถุฑุจุชู‡ ููŠ
153
00:11:31,730 --> 00:11:34,310
ุงู„ู€ greatest common divisor ู‡ูŠุทู„ุน ุฅูŠุด ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ ุงู„ู€
154
00:11:34,310 --> 00:11:38,970
a ููŠ ุงู„ู€ b ุนุดุงู† ู‡ูŠ ูƒุฃุฑูŠุงุญ ู„ู†ุง ุจูƒูู‰ ุจู†ูˆุฏุฏ ุงู„ู€ greatest
155
00:11:38,970 --> 00:11:42,690
common divisor ุจูŠู† ุงู„ู€ A ูˆุงู„ู€ B ูˆุจู†ูˆุฏุฏ ุงู„ู€ least
156
00:11:42,690 --> 00:11:45,670
common multiple ูƒูŠู ุจู†ู‚ูˆู„ุŸ A ููŠ B ุนู„ู‰ ุงู„ู€ greatest
157
00:11:45,670 --> 00:11:48,610
common divisor ุฅุฐุง ู…ุง ููŠุด ุฏุงุนูŠ ุฅู†ู‡ ู†ูˆุฏุฏ ู‡ู†ุง ูˆู†ูˆุฏุฏ
158
00:11:48,610 --> 00:11:50,630
ู‡ู†ุงูƒ ู…ุน ุฅู†ู‡ ุงู„ุฌู‡ุชูŠู† ู„ูˆ ุฃูˆุฏุฏุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
159
00:11:50,630 --> 00:11:54,950
factorization ุจูŠุตูŠุฑ ุณู‡ู„ ุชูˆุฏูŠ ู„ู„ุชุงู†ูŠู† ู„ูƒู† ุงู„ู„ูŠ ุญุงุจุจ
160
00:11:54,950 --> 00:11:59,330
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃุฎุฑู‰ ุจูŠุฏูŠ ุจูŠู‚ูˆู„ ูุฑุบุจู†ุง ุฅู†ู‡ ุจุฏูˆุง ุงู„ู€ least
161
00:11:59,330 --> 00:12:03,170
common multiple ุจูŠู† ุงู„ู€ 125 ุฒูŠ ุงู„ู„ูŠ ููˆู‚ ุฅูŠุด ุจูŠุณุงูˆูŠุŸ
162
00:12:03,290 --> 00:12:07,250
ูƒุชุจ ุงู„ู€ 2400 ุนู„ู‰ ุตูˆุฑุฉ ุงู„ู€ prime factorization ุงู„
163
00:12:07,250 --> 00:12:08,770
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
164
00:12:08,770 --> 00:12:10,290
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
165
00:12:10,290 --> 00:12:11,650
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
166
00:12:11,650 --> 00:12:16,590
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
167
00:12:16,590 --> 00:12:16,950
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
168
00:12:16,950 --> 00:12:17,950
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
169
00:12:17,950 --> 00:12:18,670
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
170
00:12:18,670 --> 00:12:20,230
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
171
00:12:20,230 --> 00:12:20,590
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
172
00:12:20,590 --> 00:12:24,470
ุงู„ู€ ุงู„ู€
173
00:12:30,770 --> 00:12:35,750
ุงู„ู€ least common multiple ู„ู„ู€ 2400 ูˆุงู„ู€ 6300
174
00:12:35,750 --> 00:12:40,510
ุฃูˆู„ ุดูŠุก ุจุฏูŠ ุฃูˆุฌุฏ ุงู„ู€ greatest common divisor ุฃูˆุฌุฏุชู‡
175
00:12:40,510 --> 00:12:43,970
ู‡ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ุฅูŠุด ูƒุงู† ุฃูˆุฌุฏู†ุงู‡ุŸ ุงู„ู€ 2400 ุณูˆุงุก
176
00:12:43,970 --> 00:12:47,590
ุงุชู†ูŠู† ูˆุฎู…ุณุฉ ููŠ ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ุชุฑุจูŠุน ูˆุงู„ู€ 6300
177
00:12:47,590 --> 00:12:50,050
ุณูˆุงุก ุงุชู†ูŠู† ุชุฑุจูŠุน ููŠ ุชู„ุงุชุฉ ุชุฑุจูŠุน ููŠ ุฎู…ุณุฉ ุชุฑุจูŠุน ููŠ
178
00:12:50,050 --> 00:12:53,610
ุณุจุนุฉ ุงู„ุขู† ุงู„ู€ greatest common divisor ุจูŠู† ุงู„ุฌู‡ุชูŠู† ุณูˆุงุก
179
00:12:53,610 --> 00:12:58,090
ุงุชู†ูŠู† ุงู„ู€ minimum ุจูŠู† ุงุชู†ูŠู† ูˆุฎู…ุณุฉ
180
00:13:00,080 --> 00:13:04,700
ุงู„ุชู„ุงุชุฉ ุจูŠู† ุงู„ูˆุงุญุฏุฉ ูˆุงู„ุชุงู†ูŠุฉ ูˆุงู„ุฎู…ุณุฉ ุจูŠู† ุงู„ุชู†ูŠู†
181
00:13:04,700 --> 00:13:09,000
ูˆุงู„ุชู†ูŠู† ูˆุงู„ุณุจุนุฉ ู„ุง ูŠูˆุฌุฏ ุฏุงุนูŠ ู„ุฃู† ุฃู†ุง ู…ุฌุฑุฏ common
182
00:13:09,000 --> 00:13:15,120
divisor ู„ูˆ ู…ุฑุชุจู„ ุฃูุถู„ ุนู†ู‡ ู„ูƒุชุจ ุงู„ุณุจุนุฉ ุนุดุงู† ุขุฎุฐ ุงู„ู€
183
00:13:15,120 --> 00:13:19,900
maximum ู„ุฃู† ู‡ุฐูŠ ุจูŠุตูŠุฑ ุงุชู†ูŠู† ู‚ุตุฑ ู„ุตุบูŠุฑ ุงุชู†ูŠู† ุชู„ุงุชุฉ
184
00:13:19,900 --> 00:13:20,680
ู„ุตุบูŠุฑ ูˆุงุญุฏ
185
00:13:27,940 --> 00:13:35,940
ุงู„ู€ least common multiple ู„ู„ู€ 2400 ูˆุงู„ู€ 6300 ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
186
00:13:35,940 --> 00:13:40,260
ุญุงุตู„ ุถุฑุจ ุงู„ุฑู‚ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ A ููŠ B ู…ู‚ุณูˆู… ุนู„ูŠู‡ ุนู„ู‰
187
00:13:40,260 --> 00:13:44,200
ุงู„ู€ 300 ุจุทู„ุน ู‡ุฐุง ุจู‚ู‰ ุฅุฐู† ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู„ุฅูŠุฌุงุฏ
188
00:13:44,200 --> 00:13:47,880
least common multiple ุฅุฐุง ุฃู†ุช ุจุชูƒุดู ูˆุฌูˆุฏู‡ุง ู…ุจุงุดุฑุฉ
189
00:13:47,880 --> 00:13:52,340
ู…ู† ู‡ุฐุง ูˆู„ูˆ ู‚ุฏุฑุชู‡ุง ู…ุจุงุดุฑุฉ ู…ู† ู‡ู†ุง ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ ุตุญูŠุญ
190
00:13:52,340 --> 00:13:59,180
ุงู„ุขู† ุงุญู†ุง ููŠ ุญุงุฌุฉ ุงุณู…ู‡ุง ู„ุฏูŠู†ุง ุงู„ู€ Euclidean Algorithm
191
00:13:59,180 --> 00:14:03,820
ุงู„ู€ Euclidean Algorithm ุจุฏู†ุง ู†ู‚ุตุต ุงู„ู€ Euclidean Algorithm
192
00:14:03,820 --> 00:14:09,280
ู†ูˆุฌุฏ ุงู„ู€ greatest common ุงู„ู„ูŠ ู‡ูˆ divisor ู…ุด ุฏุงุฆู…ุง
193
00:14:09,860 --> 00:14:13,580
ู…ูˆุถูˆุน ุงู„ู€ greatest common divisor ุงู„ู„ูŠ ู‡ูˆ ุฅู† ุงู„ุชุญู„ูŠู„
194
00:14:13,580 --> 00:14:18,620
ู„ูˆ ูƒุงู†ุช ุงู„ุฃุฑู‚ุงู… ูƒุจูŠุฑุฉ ุจุฑุถู‡ ุจุชุบู„ุจ ู„ูƒู† ุจุฑุถู‡ ู‡ู†ุงุฎุฏ
195
00:14:18,620 --> 00:14:25,060
ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู„ุฅูŠุฌุงุฏ ุงู„ู€ greatest common divisor ุจุงู„ุนุฏุฏูŠู†
196
00:14:25,060 --> 00:14:31,000
ู„ูˆ ุฃุนุทูˆู†ุง A ูˆ B ุนุฏุฏูŠู† ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ุงู„ุนุฏุฏูŠู† A ูˆ B
197
00:14:31,000 --> 00:14:34,820
ูˆูˆุฌุฏู†ุง ุจุงู„ู„ู‡ ุงู„ู€ greatest common divisor ุฏู‡ ูƒู„ู‡ ู…ุงุดูŠ
198
00:14:35,320 --> 00:14:39,420
ุฃู†ุง ุจุฏูŠ ุฃู‚ูˆู„ ุฃูƒุชุจ ุงู„ู€ A ุนู„ู‰ ุทูˆู„ ุงู„ู€ BQ ุฒุงุฆุฏ ุงู„ู€ R ูŠุนู†ูŠ
199
00:14:39,420 --> 00:14:44,460
ุจุฏูŠ ุฃู‚ุณู… ุงู„ู€ A ุนู„ู‰ ุงู„ู€ B ูŠุทู„ุน ุนู†ุฏูŠ A ุจูŠุณุงูˆูŠ BQ ุฒุงุฆุฏ ุงู„ู€ R
200
00:14:44,460 --> 00:14:50,100
ุจุงู‚ูŠ ู„ุฃู† ู‡ุฐู‡ ุงู„ู„ูŠ ู…ุง ุจุชู‚ูˆู„ูƒ ุฑูŠุญู‡ุง ุฏุงุฆู…ุง ุฏุงุฆู…ุง
201
00:14:50,100 --> 00:14:54,060
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ A ูˆุงู„ู€ B ุจูŠุณุงูˆูŠ ุงู„ุนุงู…ู„
202
00:14:54,060 --> 00:14:59,160
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ B ุงู„ู„ูŠ ู…ู‚ุณูˆู… ุนู„ูŠู‡ ูˆุฅูŠุดุŸ ูˆุจุงู‚ูŠ
203
00:14:59,550 --> 00:15:03,570
ุฏุงุฆู…ุง ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ A ูˆุงู„ู€ B ุญูŠุซ ู‡ูˆ
204
00:15:03,570 --> 00:15:07,810
ุจูŠู† ุงู„ู€ B ูˆุงู„ู€ Q ูˆุงู„ู€ R ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุชุนุงู…ู„ู†ุง ุงู„ู„ูŠ
205
00:15:07,810 --> 00:15:13,210
ู…ูˆุฌูˆุฏุฉ ู‡ูŠ ุงู„ู„ูŠ ุจุชุดุฑุน ู„ู†ุง ุงู„ุขู† ุทุฑูŠู‚ุฉ ุฅูŠุฌุงุฏ greatest
206
00:15:13,210 --> 00:15:17,710
common divisor ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนู†
207
00:15:17,710 --> 00:15:23,510
ุทุฑูŠู‚ ุงู„ู€ Euclidean Algorithm ุฃูˆ ุงู„ุฎูˆุงุฑุฒู…ูŠุฉ ุงู„ู‚ุณู…ุฉ Hence,
208
00:15:23,630 --> 00:15:26,550
the Euclidean Algorithm is an efficient method for
209
00:15:26,550 --> 00:15:30,430
computing the greatest common divisor of two integers
210
00:15:48,480 --> 00:15:50,680
ุจุงู‚ูŠ ุงู„ู€ 287 ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
211
00:15:50,680 --> 00:15:52,520
ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
212
00:15:52,520 --> 00:15:53,000
ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
213
00:15:53,000 --> 00:15:54,500
ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
214
00:15:54,500 --> 00:15:55,280
ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
215
00:15:55,280 --> 00:15:55,520
ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
216
00:15:55,520 --> 00:15:56,740
ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„ ุนุงู…ู„
217
00:15:56,740 --> 00:16:01,180
ุนุงู…ู„ ุนุงู…ู„
218
00:16:01,180 --> 00:16:08,020
ุนุงู…ู„ ุนุงู…ู„
219
00:16:08,020 --> 00:16:12,670
ุทูŠุจ ุฅูŠุด ูŠุนู†ูŠุŸ ุฃูƒู…ู„ ุฃูƒู…ู„ูƒ ุจู‚ุณู… ุงู„ุขู† 91 ู…ุน
220
00:16:12,670 --> 00:16:16,290
ุงู„ู€ 14 ู„ู…ุง ู‚ุณู…ุช ุงู„ู€ 91 ู…ุน ุงู„ู€ 14
221
00:16:16,290 --> 00:16:20,250
ูุงู„ู€ 91 ุตุงุฑ 14 ููŠ 6 ุฒุงุฆุฏ 7 ุฃุทุจู‚
222
00:16:20,250 --> 00:16:27,330
ุงู„ุขู† ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุนู„ู‰ ุงู„ู€ 91 ูˆุงู„ู€ 14 ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ
223
00:16:27,330 --> 00:16:31,490
ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ 91 ูˆุงู„ู€ 14 ุจูŠุณุงูˆูŠ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰
224
00:16:31,490 --> 00:16:35,550
ุจูŠู† ุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ูˆุงู„ู€ remainder ุงู„ู€ 14 ูˆุงู„ู€ 7 ู…ุงุดูŠ
225
00:16:35,550 --> 00:16:39,450
ุงู„ุญุงู„ ุทูŠุจ ุฅูŠุด ูŠุนู†ูŠุŸ ุจุฌูŠุจู‡ุง ุงู„ู€ greatest ุจู‚ูˆู„ูƒ ุฅูŠุด ูŠุนู†ูŠุŸ
226
00:16:39,450 --> 00:16:44,830
ุฎุฐ ุงู„ู€ 14 ูˆุงู„ู€ 7 ู‡ุฐู‡ ุงู„ู€ 14 ูˆุงู„ู€ 7 ููŠ 2 ุฒุงุฆุฏ 0 ุนู†ุฏู‡ุง ุฃู†ุง
227
00:16:44,830 --> 00:16:48,920
ุจู†ู‡ูŠู„ ู„ุฃู†ู‡ ุจูŠุตูŠุฑ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุจูŠู†
228
00:16:48,920 --> 00:16:54,120
ุงู„ู€ 14 ูˆุงู„ู€ 7 ุงู„ู„ูŠ ู‡ูˆ ุนุงุฑููŠู†ู‡ ู…ูŠู†ุŸ 7 ูŠุนู†ูŠ
229
00:16:54,120 --> 00:16:57,840
ุงู„ุขู† ู…ู† ู‡ุฐุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู†
230
00:16:57,840 --> 00:17:02,240
ุงู„ู€ 14 ุจูŠุณุงูˆูŠ 7 ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุจุถู„ ุฃูˆุฌุฏ ู‡ุฐุง
231
00:17:02,240 --> 00:17:07,820
ุจูŠุฎู„ูŠู†ูŠ ุฃุณุชู†ุชุฌ ู…ุง ูŠุนู†ูŠ ุฅู†ู‡ ุจุถู„ ุฃูˆุฌุฏ 287 ุนู„ู‰ 91 ุซู…
232
00:17:07,820 --> 00:17:12,160
ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ
233
00:17:12,160 --> 00:17:14,340
ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰
234
00:17:14,340 --> 00:17:14,460
ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ
235
00:17:14,460 --> 00:17:15,020
ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ
236
00:17:15,020 --> 00:17:15,760
ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู…
237
00:17:15,760 --> 00:17:17,780
ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ
238
00:17:17,780 --> 00:17:18,360
ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰
239
00:17:18,360 --> 00:17:19,480
ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ
240
00:17:19,480 --> 00:17:25,240
ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุซู… ู†ุงุชุฌ
241
00:17:25,240 --> 00:17:28,690
ุงู„ู‚ุณู…ุฉ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠูƒูˆู† ุฅูŠุด ุจูŠุณุงูˆูŠุŸ 7 ู…ู†
242
00:17:28,690 --> 00:17:31,490
ูˆูŠู† ุฌุจุชู‡ุŸ ู‡ุฐุง ุจู†ุงุก ุนู„ู‰ ุงู„ุนู„ุงู‚ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ุง
243
00:17:31,490 --> 00:17:33,270
ุฅู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„ู€ greatest common divisor ุจูŠู†
244
00:17:33,270 --> 00:17:36,530
ุงู„ู€ 14 ูˆุงู„ู€ 7 ุจูŠุณุงูˆูŠ 7 ูŠุนู†ูŠ ุงู„ุขู† ุดุบู„ ุงู„ู…ุซู„
245
00:17:36,530 --> 00:17:40,990
ุงู„ู„ูŠ ุจูŠูˆุฌุฏ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุนุงู„ู…ูŠ ู„ู„ู€ 287 ูˆุงู„ู€ 91 ุฅูŠุด
246
00:17:40,990 --> 00:17:47,450
ุจูŠุณุงูˆูŠุŸ ุจูŠุฌูŠ ุจูŠู‚ุณู… ุงู„ู€ 287 ุนู„ู‰ ุงู„ู€ 91 ุงู„ู„ูŠ ุฃู†ุง ุจุทู„ุน
247
00:17:47,450 --> 00:17:51,270
ุนู†ุฏู‡ ู†ุงุชุฌ ู‚ุณู…ุฉ ู…ุง ู‡ูŠ 91 ุจุทู„ุน ุจุงู‚ูŠ ุจุชู‚ุณู… ุงู„ู€ 91 ุนู„ู‰
248
00:17:51,270 --> 00:17:56,020
ุงู„ุจุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุทู„ุน ู†ุงุชุฌ ู‚ุณู…ุฉ ูˆุจุงู‚ูŠ ุจูŠุจู‚ู‰ ุชุนู…ู„
249
00:17:56,020 --> 00:18:00,900
ู‡ุฐู‡ ู„ู…ุง ุชุตู„ ููŠ ุงู„ุขุฎุฑ ุจุงู‚ูŠ ุจูŠุณุงูˆูŠ ุตูุฑ ุฃูˆู„ ุจุงู‚ูŠ
250
00:18:00,900 --> 00:18:05,400
ู‚ุจู„ ุงู„ุจุงู‚ูŠ ุตูุฑ ุจูŠูƒูˆู† ู‡ูˆ ุงู„ู€ Greatest Common
251
00:18:05,400 --> 00:18:12,700
Divisor ุจูŠู† ุงู„ุนุฏุฏูŠู† ุงู„ู„ูŠ ุจุฏุฃุช ููŠู‡ู… ุทูŠุจ ุงู„ุขู† ุงู„
252
00:18:12,700 --> 00:18:16,820
Greatest Common Divisor ุจู†ู‚ุฏุฑ ู†ูƒุชุจู‡ ุนู„ู‰ ุตูˆุฑุฉ ุงู„ู„ูŠ
253
00:18:16,820 --> 00:18:23,540
ู‡ูˆ ุงู„ุขู† linear combinations ุจูŠู† ุงู„ู„ูŠ ู‡ู… ุงู„ุนุฏุฏูŠู† ุชุจุน
254
00:18:23,540 --> 00:18:27,980
ุงู„ู„ูˆุญูŠ ุงู„ู…ูุฑูˆุถ ู…ูุฑูˆุถ ูู…ุงู†ุนูŠ ุจุฒูˆุงุฏ ุณููŠู†ุฉ ุจุชู‚ูˆู„
255
00:18:27,980 --> 00:18:33,180
ู…ุงู†ุนูŠ if a and b are positive integers then there
256
00:18:33,180 --> 00:18:37,080
exist integers s and t for example ุฌุฑูŠุชูƒู… ู…ุจุงุฏุฑุฉ
257
00:18:37,080 --> 00:18:38,580
ูˆู…ุนูŠู†ุฉ a ูˆb ุจุณุงูˆูŠุฉ
258
00:18:42,440 --> 00:18:46,800
ูŠุนู†ูŠ ุงู„ุขู† ุฅุฐุง ูƒุงู†ุช a ูˆ b ุนุจุงุฑุฉ ุนู† ุฃุนุฏุงุฏ ุงู„ุชูŠ ูŠุฌุจ
259
00:18:46,800 --> 00:18:51,920
ุฃู† ุชู†ุชุฌู‡ุง ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ s ูˆ t ุนุจุงุฑุฉ ุนู† ุฃุนุฏุงุฏ ุตุญูŠุญุฉ
260
00:18:51,920 --> 00:18:55,520
ู„ุญูŠุซ ุฃู† ุงู„ greatest common divisor ุจูŠู† a ูˆ b
261
00:18:55,520 --> 00:19:00,440
ุจูŠุณุงูˆูŠ ุนุจุงุฑุฉ ุนู† s a ุฒุงุฆุฏ t b ู‡ุฐุง ุจูŠุณู…ูŠู‡ุง linear
262
00:19:00,440 --> 00:19:01,480
combination
263
00:19:06,340 --> 00:19:09,880
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ู„ูŠ ุนู„ู‰ ุจูŠู† ุงู„ู€A ูˆ ุงู„ู€B ูŠุนู†ูŠ ูƒุงู† D
264
00:19:09,880 --> 00:19:13,620
written as a linear combination ุจูŠู† ุงู„ู€A ูˆ ุงู„ู€B
265
00:19:13,620 --> 00:19:16,700
ุงู„ุขู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ by bezout theorem ุงู„ู„ูŠ ู‚ู„ุชู‡ ู‚ุจู„
266
00:19:16,700 --> 00:19:20,380
ุดูˆูŠุฉ the greatest common divisor of integers A and
267
00:19:20,380 --> 00:19:24,880
D ูƒุงู† D expressed ู…ู…ูƒู† ุงู„ุชุนุจูŠุฑ ุนู†ู‡ on the form S A
268
00:19:24,880 --> 00:19:39,510
ุฒุงุฆุฏ T B where S and T are integers ู‡ุฐุง ู‡ูˆ ุนุงู…ู„
269
00:19:39,510 --> 00:19:43,730
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ 6 ูˆุงู„ู€ 14 ุจุณุงูˆูŠุฉ ู‡ูˆ ู†ุงู‚ุต 2
270
00:19:43,730 --> 00:19:47,650
ููŠ 6 ุฒุงุฆุฏ 1 ููŠ 14 ูƒูŠู ุฃูƒุชุจ ุจูŠู† ู‡ุคู„ุงุกุŸ ู…ู† ุฃูŠู† ุฃุฌูŠุจ
271
00:19:47,650 --> 00:19:52,010
ุงู„ู€ 1 ูˆู†ู‚ุต 2ุŸ ู…ู† ุฃูŠู† ุฃุฌูŠุจ ุงู„ู€ 2ุŸ ู…ู† ุฃูŠู† ุฃุฌูŠุจ ุงู„ู€
272
00:19:52,010 --> 00:19:58,880
2ุŸ ู…ู† ุฃูŠู† ุฃุฌูŠุจ ุงู„ู€ 2ุŸ ู…ู† ุฃูŠู† ุฃุฌูŠุจ ุงู„ู€ 2ุŸ add a
273
00:19:58,880 --> 00:20:02,560
linear combination of these two non-valid integers
274
00:20:02,560 --> 00:20:06,900
ุตู„ูˆุง ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุงู„ุขู† finding
275
00:20:06,900 --> 00:20:10,840
the greatest common divider add a linear
276
00:20:10,840 --> 00:20:15,560
combination ุจุฏู†ุง ู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ
277
00:20:15,560 --> 00:20:19,640
ุงู„ุฃุนู„ู‰ ู†ูƒุชุจู‡ ุนู„ู‰ ุตูˆุฑุฉ linear combinations of
278
00:20:19,640 --> 00:20:22,540
ุงู„ุนุฏุฏูŠู† ุงู„ู„ูŠ ุจุฏู†ุง ู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ
279
00:20:22,540 --> 00:20:29,370
ุงู„ุฃุนู„ู‰ Express ุงู„ู€ 252 ูˆุงู„198 ุงู„ู„ูŠ ู‡ูŠ ุงู„ address
280
00:20:29,370 --> 00:20:31,950
from the device you're building Express ุงู„ู€ 18
281
00:20:31,950 --> 00:20:36,230
ุทุจุนุงู‹ ู‡ูŠุทู„ุน Express ู‡ุฐุง as a linear combination of
282
00:20:36,230 --> 00:20:41,310
ุงู„ 252 ูˆ198 ูŠุนู†ูŠ ุฃู†ู†ุง ุจุฏู†ุง ู†ูƒุชุจ ุงู„ 252 ูˆ198 ุนู„ู‰
283
00:20:41,310 --> 00:20:46,170
ุตูˆุฑุฉ ุฅู† ู‡ูˆ ุญุงุท ุงู„ S ููŠ ู‡ุฐุง ุฒุงุฆุฏ ุงู„ T ููŠ ู‡ุฐุง ุจูŠุณุงูˆูŠ
284
00:20:46,170 --> 00:20:49,030
ุฅูŠู‡ุŸ ุฅูŠุดุŸ ุทู†ุงู† ุทุงุญุชู‡ ููŠ ุงู„ูˆุงู‚ุน ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ
285
00:20:49,030 --> 00:20:53,310
ู‡ู†ู‚ูˆู„ู‡ุง .. ู‡ู†ู‚ูˆู„ู‡ุง ุงู„ุขู† ู‡ุชุถุฑุจ ุนุตูุฑูŠู† ุจุญุฌู… ุฅูŠุด ุฏูŠุŸ
286
00:20:53,310 --> 00:20:59,190
ู‡ุชูŠุฌูŠ ุฃูˆู„ ุฅุดูŠ ุชูˆุฌุฏูƒ ุงู„ 252 ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ 252
287
00:20:59,190 --> 00:21:06,450
ู‡ุชูˆุฌุฏู‡ ูˆ ููŠ ู†ูุณ ุงู„ูˆุฌุฏ ุงู„ 252 ุดุงูŠููŠู† ู‡ุฐู‡ ูˆ ุงู„ 198
288
00:21:06,450 --> 00:21:11,340
ู‡ุชูŠุฌูŠ ุชูˆุฌุฏ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู†ู‡ู…ูˆ ู‡ุชูƒุชุจ ู„ูƒ
289
00:21:11,340 --> 00:21:19,820
ุฅูŠุงู‡ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ูƒูŠู ู†ุดูˆู ูƒูŠู ุดุบู„ ุงู„ู…ูƒุงู† ุงู„ู…ูˆุถูˆุน
290
00:21:19,820 --> 00:21:27,920
ุจุณ ู…ุฌุฑุฏ ุฃู† ู†ู‚ุณู… ุงู„ 252 ุนู„ู‰ 198 ูุงู„ุขู† 252 ุนู„ู‰ 198
291
00:21:27,920 --> 00:21:32,520
ุจูŠุทู„ุน ูˆุงุญุฏ ูˆ ุงู„ู…ุชุจู‚ูŠ 54 ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ุงู„ุขู†
292
00:21:32,520 --> 00:21:40,380
ุงู„ 198 ุจู‚ุณู…ู‡ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ 198 ุจุชุณุงูˆูŠ 3 ููŠ 54 ุฒุงุฆุฏ 36
293
00:21:40,380 --> 00:21:45,320
ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ู„ูŠ ุนู…ู„ุชู‡ ููˆู‚ ุจุนู…ู„ู‡ ูƒู…ุงู† ุชุญุช ุจุงุฏูŠ ุฎู„ุตุช
294
00:21:45,320 --> 00:21:50,920
ู…ู† 198 ุจุงุฏูŠ ู„ู„ 54 ุงู„ู„ูŠ ู‡ูˆ ู†ุงุชุฌ ุงู„ู‚ุณู… ู‡ุงู… ู…ุถุฑุจู‡ ููŠ
295
00:21:50,920 --> 00:21:56,000
ู…ูŠู† ููŠ ุงู„ู…ุชุจู‚ูŠ ุจู‚ู‰ ุฏูŠ ุงุณู…ู‡ ุนู„ู‰ ุงู„ู…ุชุจู‚ูŠ 36 54 ุจุชุณุงูˆูŠ
296
00:21:56,000 --> 00:22:02,280
1 ููŠ 36 ุฒุงุฆุฏ ุงู„ remainder 18 ุฏุฑุฏ 36 ูˆ18 36 ุจุชุณุงูˆูŠ
297
00:22:02,280 --> 00:22:06,720
2 ููŠ 18 ู„ู…ุง ุฃุตู„ ู…ุงููŠุด remainder ุนู„ู‰ ุทูˆู„ ุจูŠูƒูˆู† ู‡ุฐุง
298
00:22:06,720 --> 00:22:11,340
ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠู‡ ุงู„ 18 ู‡ูˆ ู‡ูŠูƒูˆู† ูŠุทู„ุน ู„ greatest
299
00:22:11,340 --> 00:22:16,640
common divisors ุจูŠู† 252 ูˆ198 ุฅุฐุง ุฃู†ุง ุจู‡ุฐุง ุงู„ุทุฑูŠู‚ุฉ
300
00:22:16,640 --> 00:22:19,380
ูุนู„ุงู‹ ุฃูˆุฌุฏุช ุงู„ู„ูŠ ู‡ูˆ greatest common divisors ูŠุนู†ูŠ
301
00:22:19,380 --> 00:22:22,980
ุจู„ุฒู…ู†ูŠุด ูŠุนุทูŠู‡ ู„ูŠ ู‡ุฐุง ุฃุตู„ุงู‹ ู‡ูˆ ุจู„ุฒู…ู†ูŠุด ู‡ุฐุง ุฃู†ุง
302
00:22:22,980 --> 00:22:26,260
ู‡ุงุนุฑูู‡ ุฃุตู„ุงู‹ ุงู„ู„ูŠ ุฃู†ุง ุฃูˆุฌุฏุช ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุนุงู„ู…ูŠ
303
00:22:26,260 --> 00:22:31,500
ุจูŠู† 252 ูˆ198 ุฅูŠุด ุจูŠุณุงูˆูŠ ุฃูˆู„ ู…ุชุจู‚ูŠ ุจุนุฏ ู…ุง ุฃุตู„
304
00:22:31,500 --> 00:22:36,210
ู„ู„ู…ุชุจู‚ูŠ ุจูŠุณุงูˆูŠ 0 ุทูŠุจ ู…ุด ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ูŠุงู‡ ู…ุฏู‰ ุนุงุฑููŠู†ู‡
305
00:22:36,210 --> 00:22:40,270
ู…ู† ุงู„ุฃูˆู„ ุงู‡ ุจุฏู†ุง ู†ูƒุชุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ 18 as a linear
306
00:22:40,270 --> 00:22:47,550
combination ู…ู† 252 ูˆ198 ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุฑุฌูˆุน ู„ู…ุง
307
00:22:47,550 --> 00:22:53,810
ุฃุตู„ู‡ุง ุฏูŠ ูƒุฏู‡ ู„ุฃู† 18 ู‡ูŠ ุจุชุณุงูˆูŠ ู‡ุงุฏูŠ ูˆ ุจู†ุฌูŠ ู„ู‡ุงุฏูŠ
308
00:22:53,810 --> 00:22:59,210
ู‡ุงู† ุฅู„ู‰ ู†ุงู‚ุต 1 ููŠ 36 ุงูŠู‡ ุณูˆูŠู‡ ุงู„ 18 ุฃุฎ ุฃุณูˆุฃ
309
00:22:59,210 --> 00:23:05,160
ุงู„ุนุงู„ู… ุงู„ู…ุดุชุฑูƒ ุจุณูˆุก 54 ู†ุงู‚ุต 1 ููŠ 36 ุจุจุฏุฃ ู…ู† ุนู†ุฏ
310
00:23:05,160 --> 00:23:08,780
ุฃูˆู„ ู…ุชุจู‚ูŠ ู…ุด ุณูุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ greatest-common divisor ูˆ
311
00:23:08,780 --> 00:23:14,360
ุจุจุฏุฃ ุฃุฑุฌุน ุณูŠุฑุฉ 18 ุจูŠุณุงูˆูŠ 54 ู†ุงู‚ุต 1 ููŠ 36 ุฃู†ุง ุจุฏูŠ
312
00:23:14,360 --> 00:23:20,320
18 ููŠ ุฏู„ุงู„ุฉ 100 252 ูˆ 198 ูŠุนู†ูŠ ู„ุง ุจุฏูŠ ุงู„ 36 ูˆู„ุง
313
00:23:20,320 --> 00:23:26,180
ุจุฏูŠ ุงู„ 54 ุงู„ุฃุฑุจุนุฉ ู…ุงุชุถุฑุจุด ุฎู„ูŠู‡ุง ุฒูŠ ู‡ุฐุง ุงู„ุขู† ุนู†ุฏ ุงู„
314
00:23:26,180 --> 00:23:33,770
36 ู‡ุฐู‡ ู‡ูŠู‡ุง ู…ู† ู‡ู†ุง ุจุชุณุงูˆูŠ 198 ู†ุงู‚ุต 3 ููŠ 54 ุฅุฐุง ุงู„ู€
315
00:23:33,770 --> 00:23:37,610
36 ู‡ุฐู‡ ู…ู† ุฃูŠู† ุจุชุฌูŠุจู‡ุง ู…ู† ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ุฌุงุจู„ู‡ุง ุฃุถุงู„ุฉ
316
00:23:37,610 --> 00:23:43,290
ุนู† 198 ู†ุงู‚ุต ุซู„ุงุซุฉ ููŠ ุฎู…ุณุฉ ุฃุฑุจุนุฉ ูˆุฎู…ุณูŠู† ุงู„ุขู† ู‚ูŠู…ุฉ
317
00:23:43,290 --> 00:23:47,990
ุงู„ู€ 36 ู‡ุฐู‡ ุฎู„ูŠู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ูˆู…ุง ุชุตุจู‡ุงุด ุจุชุนูˆุฏู‡ุง ู…ูƒุงู†
318
00:23:47,990 --> 00:23:51,830
ู…ูŠู† ุงู„ู€ 36 ุจุตูŠุฑ ุงู„ู€ 18 ุจุชุณุงูˆูŠ ุงุฑุจุนุฉ ูˆุฎู…ุณูŠู† ุฒูŠ ู…ุง
319
00:23:51,830 --> 00:23:56,430
ู‡ูŠ ูˆู…ุง ุชุตุจู‡ุงุด ู†ุงู‚ุต 1 ู…ุงุดูŠ ุงู„ุขู† ู‡ุฐุง ุงู„ูˆุงุญุฏ ู…ุถุฑูˆุจ
320
00:23:56,430 --> 00:24:01,290
ููŠ ุงู„ู€ 36 ู…ูŠู† ุงู„ู€ 36 ู‡ูŠู† ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ ู‡ูˆ 198 ู†ุงู‚ุต
321
00:24:01,290 --> 00:24:04,910
ุซู„ุงุซุฉ ููŠ ุงุฑุจุนุฉ ูˆุฎู…ุณูŠู† ุชุถุฑุจ ุฅูŠุดุŸ ู„ุฃู†ู‡ ุฃู†ุง ุจุฏูŠ ุงุญู†ุง
322
00:24:04,910 --> 00:24:11,830
ููŠ ุงู„ุขุฎุฑ ุจุฏู„ุงู„ุฉ 198 ูˆุงู„252 ุงู„ุขู† ู‡ุฐู‡ 54 ู†ุงู‚ุต 1
323
00:24:11,830 --> 00:24:19,130
ููŠ 198 ู‡ูŠ ุงู„ูˆุงุญุฏ ููŠ 198 ู‡ูŠู‡ุง ุงู„ุขู† ุนู†ุฏ 54 ูˆุงุญุฏุฉ ูˆููŠ
324
00:24:19,130 --> 00:24:22,880
ุนู†ุฏูŠ ู†ุงู‚ุต 1 ููŠ ู†ุงู‚ุต 3 ููŠ ุงุฑุจุนุฉ ูˆุฎู…ุณูŠู† ุจูŠุตูŠุฑ
325
00:24:22,880 --> 00:24:26,300
ู†ุงู‚ุต ููŠ ู†ุงู‚ุต ุจุชุฒูŠุฏ ุจูŠุตูŠุฑ 1 ููŠ 3 ููŠ 3
326
00:24:26,300 --> 00:24:29,140
ุจูŠุตูŠุฑ 3 ููŠ ุงุฑุจุนุฉ ูˆุฎู…ุณูŠู† ูˆููŠ ุนู†ุฏูŠ 1 ุงุฑุจุนุฉ
327
00:24:29,140 --> 00:24:33,040
ูˆุฎู…ุณูŠู† ุจูŠุตูŠุฑ 4 ุงุฑุจุนุฉ ู…ู† ุงุฑุจุนุฉ ูˆุฎู…ุณูŠู† ูŠุนู†ูŠ
328
00:24:33,040 --> 00:24:38,940
1 ููŠ ู†ุงู‚ุต 1 ููŠ ู†ุงู‚ุต 3 ุชุทู„ุน 3 3
329
00:24:38,940 --> 00:24:41,680
ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู† ููŠ 4 ูˆุฎู…ุณูŠู† 1 ููŠ 4 ูˆุฎู…ุณูŠู†
330
00:24:41,680 --> 00:24:45,260
ุจูŠุตูŠุฑ 4 ููŠ 4 ูˆุฎู…ุณูŠู† ู„ุฃู†ู‡ ุจูŠุตูŠุฑ ู…ู† ุงู„ู€ 4
331
00:24:45,260 --> 00:24:48,960
ูˆุฎู…ุณูŠู† ู„ูˆ ุณู…ูŠู†ุงู‡ุง ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ ุณ ุจูŠุตูŠุฑ ู‡ู†ุง
332
00:24:48,960 --> 00:24:51,720
3 ุณ ูˆู‡ู†ุง ุณ ุจูŠุตูŠุฑ ุงู„ู€ 4 ุณ ู…ูŠู† ุงู„ู€ ุณ
333
00:24:51,720 --> 00:24:55,060
ุจูŠู‚ูˆู„ู†ุง ุฃู†ุง 4 ูˆุฎู…ุณูŠู† ูุจูŠุตูŠุฑ 4 ููŠ 4 ูˆุฎู…ุณูŠู†
334
00:24:55,060 --> 00:24:58,480
ู†ุงู‚ุต 1 ููŠ 198 ุชุถุฑุจ ู‡ู†ุด ู„ุงู†ู‡ ุจุฏูŠ
335
00:24:58,480 --> 00:25:02,330
ุฅูŠุงู‡ ุฅู† ุฃู†ุง ุงู„ุขู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ู„ุง ุฃุฑูŠุฏ ุฃู† ุฃู‚ูˆู…
336
00:25:02,330 --> 00:25:04,050
ุจุงุณุชุฎุฏุงู…ู‡ุง ุฃู†ุง ุฃุฑูŠุฏ ุฃู† ุฃู‚ูˆู… ุจุงุณุชุฎุฏุงู… ุงู„ุงุฑุจุนุฉ ูˆ
337
00:25:04,050 --> 00:25:10,130
ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ
338
00:25:10,130 --> 00:25:16,290
ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ
339
00:25:16,290 --> 00:25:16,550
ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ
340
00:25:16,550 --> 00:25:18,150
ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ
341
00:25:18,150 --> 00:25:18,270
ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ
342
00:25:18,270 --> 00:25:26,030
ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆ
343
00:25:26,030 --> 00:25:30,570
ุฎู…ุณูŠู† ุงู„ุงุฑุจุนุฉ ูˆู‡ุฐู‡ ุงู„ุขู† ุจุฏูŠ ุฃุถุนู‡ุง ููŠ ู…ูƒุงู† ุงู„ู€ 54
344
00:25:30,570 --> 00:25:31,870
ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฃู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ
345
00:25:31,870 --> 00:25:33,370
ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช
346
00:25:33,370 --> 00:25:34,310
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง
347
00:25:34,310 --> 00:25:36,210
ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54
348
00:25:36,210 --> 00:25:36,590
ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ
349
00:25:36,590 --> 00:25:40,550
ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช
350
00:25:40,550 --> 00:25:45,590
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง
351
00:25:45,590 --> 00:25:48,070
ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54 ู„ุฅู†ู‡ุง ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 54
352
00:25:48,070 --> 00:25:51,230
ู„ุฅู†ู‡ุง
353
00:25:51,230 --> 00:25:55,160
ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ 4 ููŠ ู†ุงู‚ุต 1 ู†ุงู‚ุต 4
354
00:25:55,160 --> 00:26:01,140
ุณ ูˆููŠ ูƒู…ุงู† ู†ุงู‚ุต ุณ ู†ุงู‚ุต 5 ุณ ู…ู† ุงู„ู€ ุณ
355
00:26:01,140 --> 00:26:05,880
ุงู„ู€ 198 ูŠุนู†ูŠ ุนู†ุฏูŠ ู†ุงู‚ุต 4 ู…ู†
356
00:26:05,880 --> 00:26:09,260
ุงู„ู€ 198ุงุช ูˆุนู†ุฏูŠ ู†ุงู‚ุต 1 ู…ู†
357
00:26:09,260 --> 00:26:13,040
ุงู„ู€ 198ุงุช ุจูŠุตูŠุฑ ู†ุงู‚ุต 4 ูˆู†ุงู‚ุต
358
00:26:13,040 --> 00:26:15,980
1 ู…ู† 1 ุจูŠุตูŠุฑ ู†ุงู‚ุต 5 ููŠ 198
359
00:26:15,980 --> 00:26:21,720
ูˆุชุณุนูŠู† ู…ุงุฐุง ุฅุฐุง ู‚ู…ุช ุจุงุณุชุฎุฏุงู… ุงู„ูˆุตูˆู„ ู„ู‚ู…ุฉ 18 ุฃูƒุชุจู‡ุง
360
00:26:21,720 --> 00:26:25,360
ุนู„ู‰ ุตูˆุฑุฉ linear combination 4 ููŠ 252 ู†ุงู‚ุต 5 ููŠ 198
361
00:26:25,360 --> 00:26:28,820
ูˆ ุฎู…ุณูŠู† ู†ุงู‚ุต 5 ููŠ 198 ุงู„ู„ูŠ ู‡ูˆ
362
00:26:28,820 --> 00:26:32,620
ุทุงู„ุจู‡ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ 18 ุจุชุณุงูˆูŠ ู‡ุงุฏูŠ ููŠ
363
00:26:32,620 --> 00:26:37,220
ู‡ุงุฏูŠ ูู‡ูˆ ุงู„ linear combination ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 252
364
00:26:37,220 --> 00:26:40,900
ูˆ 198 ููŠ ุงู„ู€ 252 ูˆ 198 ูŠุนู†ูŠ ุงู„ S
365
00:26:40,900 --> 00:26:44,990
ุนุจุงุฑุฉ ุนู† 4 ูˆ ุงู„ T ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต 5 ุฅุฐุง ู‡ุฐู‡
366
00:26:44,990 --> 00:26:48,210
ุถุฑุจุช ููŠู‡ุง ุนุตูุฑูŠู† ุจุญุฌู… ุงู„ู€ Euclidean algorithm ุฃูˆ
367
00:26:48,210 --> 00:26:53,710
ุฎูˆุงุฑุฒู…ูŠุชุง ูˆู‚ุณู…ู‡ุง ุฅู† ุฃู†ุง ุถู„ูŠุช ุฃู† ุฃู‚ุณู… 252 ุนู„ู‰ 198 ู„ู…ุง
368
00:26:53,710 --> 00:26:56,950
ุฃุตู„ุช ู„ู„ remainder zero ุฃูˆู„ remainder ู…ุด zero ุจูƒู„
369
00:26:56,950 --> 00:27:01,190
ู‡ูˆ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู†ู‡ู… ู‡ุฐุง ุจู‚ุฏุฑ ุฃุฑุฌุน ุฃุฑุฌุน
370
00:27:01,190 --> 00:27:04,490
ุฒูŠ ู…ุง ุฃุฑุฌุน ู†ู‡ุงู† ู„ู…ุง ุฃูˆุตู„ ุฅู†ู‡ ุนุจุงุฑุฉ ุนู† linear
371
00:27:04,490 --> 00:27:12,190
combination ุจูŠู† 198 ูˆ252 ูˆู‡ูˆ ุงู„ู…ุฎู„ูˆู‚ ุทูŠุจ ุงู„ุขู† ุจุนุถ
372
00:27:12,190 --> 00:27:17,190
ุงู„ู†ุชุงุฆุฌ ุนู„ู‰ ุจูŠุฒูˆุช ููŠูˆุฑูŠู† Consequences of Bezout's
373
00:27:17,190 --> 00:27:20,930
theorem ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
374
00:27:20,930 --> 00:27:24,210
Bezout's theorem ุฅูŠุด ุจุชู‚ูˆู„ .. ุงู„ู†ุชูŠุฌุฉ ุงู„ุฃูˆู„ู‰ ุจุชู‚ูˆู„ if
375
00:27:24,210 --> 00:27:27,130
a ูˆ b and c are positive integers such that
376
00:27:27,130 --> 00:27:30,510
ู„ุฌุฑูŠุณูƒู… ุงู„ divisor ุจูŠู† ุงู„ a ูˆ ุงู„ b ุจูŠุณุงูˆูŠ ูˆุงุญุฏ and a
377
00:27:30,510 --> 00:27:34,910
ุจุชู‚ุณู… ุงู„ bc then a ุจุชู‚ุณู… ุงู„ c ุจุงุฎุชุตุงุฑ ุจู‚ูˆู„ ู„ูˆ ุนุฑุถ
378
00:27:34,910 --> 00:27:39,120
ุนู„ูŠูƒ ุงู„ู„ูŠ a ุจุชู‚ุณู… ุงู„ b ููŠ c ู‡ู„ ุจุชู‚ุฏุฑ ุชู‚ูˆู„ ุงู„ A
379
00:27:39,120 --> 00:27:43,580
ุจุชู‚ุณู… ุงู„ B ุฃูˆ ุงู„ A ุจุชู‚ุณู… ุงู„ CุŸ ู„ูŠุณ ุดุฑุทุง ู…ุชู‰ ุจุชู‚ุฏุฑ
380
00:27:43,580 --> 00:27:47,200
ุชู‚ูˆู„ ู„ู…ุง ูŠูƒูˆู† ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ A ูˆ ุงู„
381
00:27:47,200 --> 00:27:50,680
B ูˆุงุญุฏ ู…ุฏุงู… ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ A ูˆ ุงู„ B
382
00:27:50,680 --> 00:27:56,120
ูˆุงุญุฏ ูŠุนู†ูŠ ูุด ุฐู†ู‡ู† ุนูˆุงู…ู„ ู…ุดุชุฑูƒุฉ ูŠุนู†ูŠ ุงู„ุขู† ู„ู…ุง ุงู„ A
383
00:27:56,120 --> 00:27:59,850
ุจุชู‚ุณู… ุงู„ B ููŠ ุงู„ C ุงู„ู€ A ูˆ ุงู„ู€ B ู„ุง ูŠูˆุฌุฏ ุจูŠู†ู‡ู…ุง ุนูˆุงู…ู„
384
00:27:59,850 --> 00:28:03,090
ุฅุฐุงู‹ ุงู„ู€ M ุงู„ู€ A ู‡ุชูƒูˆู† ุชุฌุณู… ู…ูŠู†ุŸ ู‡ุชุฌุณู… ุงู„ู„ูŠ ุจูŠุทู„ุน
385
00:28:03,090 --> 00:28:07,490
ู„ู„ู€ C ูƒูŠู ุฌุณู…ุช ุงู„ู€ B ููŠ ุงู„ู€ C ุฅุฐุงู‹ ู„ุงุฒู… ุชุฌุณู…ูŠู† ุงู„ู€
386
00:28:07,490 --> 00:28:13,230
C ูŠุนู†ูŠ ู…ุซู„ุง ุนู†ุฏูƒ ุฎู…ุณุฉ ุชุฌุณู… ุงู„ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ุนุดุฑ
387
00:28:14,960 --> 00:28:18,400
ุงู„ุฎุงู…ุณุฉ ูˆ ุงู„ุชู„ุงุชุฉ ู…ุง ููŠุด ุจูŠู†ู‡ู…ุง ุนูˆุงู…ู„ ู…ุดุชุฑูƒุฉ ุงู„ู€ B ุซู„ุงุซุฉ ุฅุฐุง
388
00:28:18,400 --> 00:28:21,580
ุงู„ุฎุงู…ุณุฉ ู„ุงุฒู… ุชูƒุณุจ ู…ูŠู†ุŸ ุงู„ู„ูŠ ุจุชุธู„ C ุงู„ู„ูŠ ู‡ูŠ ู‚ู„ู†ุงู‡ุง
389
00:28:21,580 --> 00:28:26,980
ุฎู…ุณุฉ ุนุดุฑ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุฎู„ูŠู†ุง ุฃู…ูˆุฑ ุณุฑูŠุนุฉ ุนู„ู‰ ุงู„ุธู‡ูˆุฑ
390
00:28:26,980 --> 00:28:31,300
ุนุณู‰ ู…ุง ุชูƒูˆู†ูˆุง ุนู†ุฏูƒู… ููƒุฑุฉ ุนู„ู‰ ูƒูŠู ุชุจุฑู‡ู† ุงู„ุขู† ุงู„ุนุงู…ู„
391
00:28:31,300 --> 00:28:34,060
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ A ูˆ ุงู„ู€ B ู…ู‚ุชุฑุถูŠู† ูˆุงุญุฏ
392
00:28:34,060 --> 00:28:38,560
ู…ู‚ุชุฑุถ ุฃู† ุงู„ู€ A ุชูƒุณุจ ู…ูŠู†ุŸ ุงู„ู€ B ููŠ ุงู„ู€ C ู…ุฏุงู… ุงู„ุนุงู…ู„
393
00:28:38,560 --> 00:28:41,380
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ A ูˆ ุงู„ู€ B ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุญุณุจ
394
00:28:41,380 --> 00:28:45,960
ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฌุงุจุช ู‚ู„ูŠู„ุจู†ูƒุชุจ ุงู„ูˆุงุญุฏ as a linear
395
00:28:45,960 --> 00:28:49,320
combination ุจูŠู† ุงู„ A ูˆ ุงู„ B ูŠุนู†ูŠ ุจู‚ุฏุฑ ุงูƒุชุจ ุงู„ูˆุงุญุฏ
396
00:28:49,320 --> 00:28:55,700
ุนู„ู‰ ุตูˆุฑุฉ S ููŠ A ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ุขู† S A ุญูŠุซ
397
00:28:55,700 --> 00:28:59,320
S ุนุจุงุฑุฉ ุนู† integer ูˆ T ุนุจุงุฑุฉ ุนู† integer ุถุฑุจู†ุง
398
00:28:59,320 --> 00:29:07,160
ุงู„ุฌู‡ุชูŠู† ููŠ C ู‡ุฐู‡ุงุณ ุงูŠ ููŠ ุณูŠ ุฒุงุฆุฏ ุช ููŠ ุจูŠ ููŠ ุณูŠ
399
00:29:07,160 --> 00:29:13,200
ุจูŠุณุงูˆูŠ ูƒุฏุงุด ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุณูŠ ุฅุฐุง ุตุงุฑุช
400
00:29:13,200 --> 00:29:17,340
ุนู†ุฏูŠ ุงุณ ุงูŠ ุณูŠ ุฒุงุฆุฏ ุช ุจูŠ ุณูŠ ุจูŠุณุงูˆูŠ ุณูŠ ู„ู…ุง ุถุฑุจู†ุง ุงู„ุทุฑู
401
00:29:17,340 --> 00:29:21,640
ุงู„ูŠู…ูŠู† ููŠ ุณูŠ ุทูŠุจ ุฎู„ูŠ ู‡ุฏู ุงู„ุฏุงูƒุฑุฉ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ a
402
00:29:21,640 --> 00:29:26,540
ุจุชูƒุณุจ ุงู„ bc ู…ุนุทูŠู†ูŠู‡ุง ููˆู‚ ุงู„ a ุจุชูƒุณุจ ุงู„ bc ุงู„ุขู† ุฃูƒูŠุฏ
403
00:29:26,540 --> 00:29:30,280
ุงู„ู„ูŠ ู‡ูˆ ุงู„ a ู‡ุชูƒุณุจ ุงู„ t ููŠ b ููŠ c ู…ุฏุงู… ุฃู†ุช ุจุชูƒุณุจ
404
00:29:30,280 --> 00:29:35,420
ุงู„ bc ู„ุญุงู„ู‡ุง ูŠุนู†ูŠ ู…ุฏุงู… ุงู„ A ุจุชูƒุณุจ ู…ุซู„ุง ุฎู…ุณุฉ ุงู„ุฎู…ุณุฉ
405
00:29:35,420 --> 00:29:39,100
ุจุชูƒุณุจ ุฎู…ุณุฉ ููŠ ุชู„ุงุชุฉ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ A ุจุชูƒุณุจ ุฎู…ุณุฉ ููŠ
406
00:29:39,100 --> 00:29:45,400
ุชู„ุงุชุฉ ููŠ ุนุดุฑุฉ ุฃูƒูŠุฏ ุฅุฐุง ุงู„ A ุจุชูƒุณุจ T ููŠ C ูˆุนู†ุฏูŠ ุงู„
407
00:29:45,400 --> 00:29:48,960
A ุจุชูƒุณุจ ุงู„ S ููŠ A ููŠ C ู„ุฃู† ุงู„ A ู‡ูŠ ุฅุฐุง ุงู„ A ุนุงู…ู„
408
00:29:48,960 --> 00:29:52,360
ู…ู† ุงู„ุนูˆุงู…ู„ ู‡ุฐู‡ ู…ุฏุงู… ุงู„ A ุจุชูƒุณุจ ู‡ุฐู‡ ูˆ ุงู„ A ุจุชูƒุณุจ
409
00:29:52,360 --> 00:29:56,680
ู‡ุฐู‡ ุฅุฐุง ุญุณุจ ู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ุงู„ A ู‡ุชูƒุณุจ ู…ุฌู…ูˆุนู‡ู… ุงู„ู„ูŠ ู‡ูˆ
410
00:29:56,680 --> 00:30:02,330
SAC ุฒูŠ TBC ู…ุฌู…ูˆุนู‡ู… ู‡ุฐุง ุงูŠุด ุงุณู…ู‡ C ูŠุนู†ูŠ ุงู„ A ู‡ุชูƒุณุจ
411
00:30:02,330 --> 00:30:07,490
ุงู„ C ุฅุฐุง ู‡ูŠูƒ ุฃุจูˆูƒูˆู„ ุฃุซุจุชู†ุง ุฃู†ู‡ ู„ูˆ A ุชูƒุณุจ ุงู„ B ูˆ ุงู„
412
00:30:07,490 --> 00:30:10,730
C ูˆ ุงู„ู…ุดุชุฑูƒุฉ ุงู„ู„ูŠ ุนุงู„ุฉ ุจูŠู† ุงู„ B ูˆ ุงู„ A ูˆุงุญุฏ ุฅุฐุง ุงู„
413
00:30:10,730 --> 00:30:16,910
A ุชูƒุณุจ ุงู„ C ุทูŠุจ ุงู„ุขู† ุงุญู†ุง ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ
414
00:30:16,910 --> 00:30:21,390
ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฃูˆ ุงู„ู„ู…ู‘ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง
415
00:30:21,390 --> 00:30:25,590
ุงู„ู„ูŠ ุจุชู‚ูˆู„ ุงู„ุชุนู…ูŠู… ูŠุนู†ูŠ if B is a prime and B
416
00:30:25,590 --> 00:30:31,180
ุจุชูƒุณุจ ุงู„ A ูˆุงุญุฏ then ุจุชู‚ุณู… ุงู„ E I for some I ุจู‚ูˆู„
417
00:30:31,180 --> 00:30:34,540
ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช ุนู†ุฏูŠ ุงู„ B ุนุจุงุฑุฉ ุนู† ุฅุจุฑุงู‡ูŠู… ูŠุนู†ูŠ ูƒุชู„ุฉ
418
00:30:34,540 --> 00:30:38,100
ูˆุงุญุฏุฉ ุจุชู‚ุณู… ุงู„ A ูˆุงุญุฏ ููŠ ุงู„ A ุงุชู†ูŠู† ููŠ ุงู„ A ุชู„ุงุชุฉ
419
00:30:38,100 --> 00:30:43,660
ููŠ ุงู„ A N ุฅุฐุง ู„ุงุฒู… ุงู„ B ุชู‚ุณู… ู…ู† ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„ุฉ ุนู„ู‰
420
00:30:43,660 --> 00:30:46,120
ุงู„ุฃู‚ู„ ูˆุงุญุฏุฉ ู„ูˆ ูƒู†ุช ุชู‚ุณู…ุช ุงุชู†ูŠู† ูˆ ูƒู†ุช ุชู‚ุณู…ุช ุชู„ุงุชุฉ
421
00:30:46,120 --> 00:30:49,840
ูŠุนู†ูŠ ู„ูˆ ุชู„ุงุชุฉ ุจุชู‚ุณู… ุฎู…ุณุฉ ููŠ ุณุชุฉ ุนุดุฑ ููŠ ุฎู…ุณุฉ ูˆ
422
00:30:49,840 --> 00:30:53,900
ุนุดุฑูŠู† ููŠ ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ููŠ ุทู…ู†ุชุงุด ููŠ ูƒุฏู‡ ุฅุฐุง ุฃูƒูŠุฏ
423
00:30:53,900 --> 00:30:56,480
ุงู„ุชู„ุงุชุฉ ุฏูŠ ุจุชู‚ุณู… ูˆุงุญุฏุฉ ู…ู† ู‡ู†ุง ูˆ ู„ุชูƒูˆู† ู…ุซู„ุง ุงู„ู„ูŠ
424
00:30:56,480 --> 00:31:00,550
ู‚ู„ุชู‡ุง A ุงุด ุทู…ู†ุชุงุด ุฅุฐุง ู„ู…ุง ุงู„ู€ prime ุจูŠูƒุณุจ ุงู„ a1, a2
425
00:31:00,550 --> 00:31:05,030
and an ู„ุงุฒู… ุงู„ prime ุจูŠูƒุณุจ ูˆุงุญุฏ ู…ู† ู‡ุฐูˆู„ุฉ ู„ุฃู†ู‡ ุฃุตู„ุง
426
00:31:05,030 --> 00:31:09,190
ู‡ูˆ ูƒุชู„ุฉ ูˆุงุญุฏุฉ ู…ุด ู‡ุชู„ุงู‚ูˆู‡ ู…ูุฑู‘ุฌ ุจูŠู† ุชู„ุชูŠู† ู„ุงุฒู… ูŠูƒูˆู†
427
00:31:09,190 --> 00:31:12,310
ููŠ ู‡ุฐู‡ ูƒู„ู‡ ุฃูˆ ููŠ ู‡ุฐู‡ ูƒู„ู‡ ุฃูˆ ููŠ ู‡ุฐู‡ ูƒู„ู‡ ุฃูˆ ููŠ ูƒู„
428
00:31:12,310 --> 00:31:16,270
ูˆุงุญุฏุฉ ูƒู„ู‡ ุฅุฐุง ุงู„ b ุจุชูƒุณุจ ai for some i for some i
429
00:31:16,270 --> 00:31:18,590
ู…ู…ูƒู† ุชูƒูˆู† ูˆุงุญุฏุฉ ูˆ ุชู„ุชูŠู† ูˆ ุชู„ุชูŠู† ุฅุฐุง ุนู„ู‰ ุงู„ุฃู‚ู„
430
00:31:18,590 --> 00:31:23,150
ูˆุงุญุฏุฉ ุจุชูƒุณุจ ุทูŠุจ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ ุฃูˆ ุงู„ู„ู…ู‘ุฉ
431
00:31:23,150 --> 00:31:28,350
ุนุจุงุฑุฉ ุนู† ู„ู…ู‘ุฉ ุชู„ุช ุงู„ุขู† ุจุฏู†ุง ู†ุฌูŠ ู„ุขุฎุฑ issue ููŠ
432
00:31:28,350 --> 00:31:32,590
ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ dividing congruences by an
433
00:31:32,590 --> 00:31:38,970
integer ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ู‚ุณู…ุฉ ุงู„ุชุทุงุจู‚ ุจูˆุงุณุทุฉ
434
00:31:38,970 --> 00:31:42,550
ุนุฏุฏ ุตุญูŠุญ ูŠุนู†ูŠ dividing both of a valid congruences
435
00:31:42,550 --> 00:31:47,770
ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ AC ุชุทุงุจู‚ BC ู…ุฏู„ู‡ M ู…ุฏู„ู‡ M ู„ูˆ ูƒุงู†
436
00:31:47,770 --> 00:31:51,730
ู‡ุฐู‡ ุงู„ุชุทุงุจู‚ุฉ ุตุญูŠุญุฉ ูŠุนู†ูŠ ุงูŠุด ุตุญูŠุญุฉ ูŠุนู†ูŠ ุงู„ุทุฑู ุชูƒุณุจ
437
00:31:51,730 --> 00:31:57,760
ุงู„ AC ู†ู‚ุต BC ู„ูˆ ูƒุงู†ุช ู‡ุฐู‡ ุตุญูŠุญุฉ ู…ุด ุดุฑุท ุงู†ู‡ ุชู‚ุฏุฑ ุชู‚ูˆู„
438
00:31:57,760 --> 00:32:02,100
by an integer ุงู„ู„ูŠ ู‡ูˆ does not always produce a
439
00:32:02,100 --> 00:32:05,960
valid congruent ูŠุนู†ูŠ ู…ุด ุดุฑุท ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ุฌุณู…ู†ุง
440
00:32:05,960 --> 00:32:09,440
ู‡ุฏูˆู„ ุงู„ุฌู‡ุชูŠู† ุน C ู†ูŠุฌูŠ ู†ู‚ูˆู„ ูˆุงู„ู„ู‡ ุงุฐุง A ุชุทุงุจู‚ B
441
00:32:09,440 --> 00:32:14,580
modulo M ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช AC ุชุทุงุจู‚ BC modulo M ู„ูŠุณ ุดุฑุท
442
00:32:14,580 --> 00:32:19,760
ุงู†ู‡ ูŠุทู„ุน ุงู„ A ุชุทุงุจู‚ B modulo B modulo M ู‡ุฐู‡ ุงู„ู‚ุณู…ุฉ
443
00:32:19,760 --> 00:32:24,020
ุฃูˆ ุงู„ุงู‚ุชุตุงุฏ ู…ุด ุฒูŠ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุนุงุฏูŠุฉ ู‡ุฐู‡ ุงู„ู‚ุณู…ุฉ ู…ุด
444
00:32:24,020 --> 00:32:26,600
ุฒูŠ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุนุงุฏูŠุฉ ุจุชูŠุฌูŠ ุชู‚ูˆู„ ุดูŠู„ ุงู„ C ูˆ ุดูŠู„ ุงู„ C
445
00:32:26,600 --> 00:32:30,560
ุจูŠุตูŠุฑ ุงูŠู‡ ุชุทุงุจู‚ ุงู„ D ู…ุฏู„ู‡ M ู‡ุฐู‡ ู…ุซุงู„ ู…ุซู„ุง ุนู†ุฏ 2
446
00:32:30,560 --> 00:32:35,660
ูุนุดุฑุฉ ุชุทุงุจู‚ 3 ูุนุดุฑุฉ ู…ุฏู„ 5 ุตุญูŠุญ ู‡ุฐุง ูˆู„ุง ู„ุง ู„ุฃู† 2
447
00:32:35,660 --> 00:32:39,380
ูุนุดุฑุฉ 20 ุซู„ุงุซุฉ ูุนุดุฑุฉ ุชู„ุงุชูŠู† ุชู„ุงุชูŠู† ู†ุงู‚ุต ุนุดุฑูŠู† ุนุดุฑุฉ
448
00:32:39,380 --> 00:32:44,140
ุงู„ุฎู…ุณุฉ ุจุชู‚ุณู… ุงู„ุนุดุฑุฉ ุฅุฐุง ูุนู„ุง ู‡ุฐู‡ ุงู„ู…ุชุทุงุจู‚ุฉ ุตุญูŠุญุฉ ู„ูˆ
449
00:32:44,140 --> 00:32:46,840
ุฃุชูŠ ูˆุงุญุฏ ูˆู‚ุงู„ ู„ูŠ ุฎู„ู‘ูŠู†ุง ู†ุฎุชุตุฑ ุงู„ุนุดุฑุฉ ู…ุน ุงู„ุนุดุฑุฉ
450
00:32:46,840 --> 00:32:49,620
ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงุชู†ูŠู† ู…ุชุทุงุจู‚ ุงู„ุชู„ุงุชุฉ ู…ู† ุงู„ุฎู…ุณุฉ ุตุญ ูˆู„ุง
451
00:32:49,620 --> 00:32:55,060
ุบู„ุท ู‡ุฐุง ุบู„ุท ู…ุด ุตุญูŠุญ ู„ุฃู† ุงู„ุฎู…ุณุฉ ู„ุง ุชู‚ุณู… ุชู„ุงุชุฉ ู†ู‚ุต
452
00:32:55,060 --> 00:33:00,720
ุงุชู†ูŠู† ู„ุฃู† ู‡ูŠูƒ ู…ุนู†ุงุชู‡ ู…ุชุทุงุจู‚ุฉ ุนุดุงู† ุชูƒูˆู† ู‡ุฐู‡ ุตุญูŠุญุฉ
453
00:33:00,720 --> 00:33:03,320
ู„ุงุฒู… ุงู„ุฎู…ุณุฉ ุชู‚ุณู… ุชู„ุงุชุฉ ู†ู‚ุต ุงุชู†ูŠู† ู„ูƒู† ุงู„ุฎู…ุณุฉ ู„ุง
454
00:33:03,320 --> 00:33:06,860
ุชู‚ุณู… ุชู„ุงุชุฉ ู†ู‚ุต ุงุชู†ูŠู† ู„ุฃู† ุงู„ุฎู…ุณุฉ ู„ุง ุชู‚ุณู… ุงู„ูˆุงุญุฏ ุฅุฐุง
455
00:33:06,860 --> 00:33:11,720
ู…ุง ู†ูุนุด ู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุฎุชุตุฑ ุนุดุฑุฉ ู…ุน ุงู„ุนุดุฑุฉ ุทุจ ู‡ุง
456
00:33:11,720 --> 00:33:16,970
ูƒูŠูุงุด ู†ุณูˆูŠู‡ูˆ ูŠู‚ูˆู„ ู„ูƒ ุงู„ุงุฎุชุตุงุฑ ูƒู…ุง ูŠุนู†ูŠ ุฃูˆ ูŠุดุฑู‘ุน ู„ูƒ
457
00:33:16,970 --> 00:33:21,410
ุงู„ุงุฎุชุตุงุฑ ุจู…ุง ูŠุนู†ูŠ but divided by any integer
458
00:33:21,410 --> 00:33:27,110
relative to the prime to the modulus does produce
459
00:33:27,110 --> 00:33:30,670
a valid congruent ุงูŠุด ูŠุนู†ูŠ ู‡ุฐุงุŸ ุงูŠุด ุจุชู‚ูˆู„ุŸ ุจู‚ูˆู„ ู…ุง
460
00:33:30,670 --> 00:33:34,690
ูŠุนู†ูŠ ุจู‚ูˆู„ ุงู„ููŠูˆู† ุงู„ุณุงุจุน ุจุชู‚ูˆู„ ู„ูƒ ู„ูˆ ูƒุงู†ุช M ุจูŠ a
461
00:33:34,690 --> 00:33:39,350
positive integer and A will be a C integer such
462
00:33:39,350 --> 00:33:44,000
that A ููŠ C ูŠุชุทุงุจู‚ ุจูŠู‡ C ู…ุฏู„ู‡ M ู„ูˆ ูุฑุถู†ุง ู‡ุฐุง A C
463
00:33:44,000 --> 00:33:48,200
ุชุทุงุจู‚ ุงู„ B ูˆ B C ู…ุฏู„ู‡ M ูˆ ุงู„ greatest common
464
00:33:48,200 --> 00:33:53,200
divisor ุจูŠู† ุงู„ C ูˆ ุงู„ M ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุจูŠู† ุงู„ C ูˆ ุงู„ M
465
00:33:53,200 --> 00:33:57,940
ุจุณุงูˆูŠ ูˆุงุญุฏ ู‡ูŠุนุทูŠู†ุง ุงู† ุงู„ A ุชุทุงุจู‚ ุงู„ B ู…ุฏู„ู‡ ุงู„
466
00:33:57,940 --> 00:34:04,520
M ูŠุนู†ูŠ ุจู‚ูˆู„ ู„ูƒ ุชู‚ุฏุฑ ุชุนู…ู„ ุงู„ุงุฎุชุตุงุฑ C ุชุฑูˆุญ ู…ุน ุงู„ C ุฅุฐุง
467
00:34:04,520 --> 00:34:07,480
ูƒุงู† ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ C ูˆ ุงู„ M ุงูŠุด
468
00:34:07,480 --> 00:34:12,920
ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ c
469
00:34:12,920 --> 00:34:16,420
ูˆ ุงู„ m ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุจูŠู† ุงู„ c ูˆ ุงู„ m ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
470
00:34:16,420 --> 00:34:23,200
ุจูŠุฎู„ูŠูƒ ุชุฎุชุตุฑ ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ุงู„ุขู† ุฎู…ุณุฉ ููŠ
471
00:34:23,200 --> 00:34:31,340
ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ููŠ ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ
472
00:34:31,340 --> 00:34:38,320
modulo ุฎู…ุณุฉ ููŠ ุงุชู†ูŠู† ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ููŠ ุงุชู†ูŠู†
473
00:34:38,320 --> 00:34:39,460
ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูˆ
474
00:34:46,680 --> 00:34:50,120
ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู€ C ูˆ ุงู„ู€ M ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
475
00:34:50,120 --> 00:34:54,660
ุจูŠูƒูˆู† ุนู†ุฏ ุงู„ู€ A ุชุทุงุจู‚ ุงู„ู€ B modulo M ุงู„ู„ูŠ ู‡ูˆ ุจูƒู„
476
00:34:54,660 --> 00:34:58,720
ุจุณุงุทุฉ ุงู‚ุชุตุงุฏ ูƒู…ุง ู‚ู„ู†ุง ููŠ ู…ุซุงู„ ู„ูˆ ุฃุฎุฏู†ุง ุฎู…ุณุฉ ู…ุซู„ุง ููŠ
477
00:34:58,720 --> 00:35:02,020
ุงุชู†ูŠู† ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† modulo ุซู„ุงุซุฉ
478
00:35:12,570 --> 00:35:22,690
ุงู„ุขู† ู‡ุฐู‡ ู‡ูŠ ู‚ุณู… ุงู„ู…ุดุฑูˆุน ุนู†ุฏูŠ A C ุชุทุงุจู‚ B C mod M
479
00:35:22,690 --> 00:35:26,330
ู…ุนู†ุงุชู‡ ุงู„ุทุฑู ุชูƒุณุจ ุงู„ A C ู†ุงู‚ุต ุงู„ B C ู†ุงุฎุฏ ุงู„ C
480
00:35:26,330 --> 00:35:29,830
ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุงู„ุถุจุท ุงู„ู„ูŠ ู‡ูŠ ุงู„ุทุฑู ุชูƒุณุจ ุงู„ C ููŠ ุงู„ A
481
00:35:29,830 --> 00:35:34,450
ู†ุงู‚ุต B ูˆ ู‚ู„ู†ุง ุจู…ุง ุงู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰
482
00:35:34,450 --> 00:35:37,470
ุจูŠู† ุงู„ M ูˆ ุงู„ C ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ุงู„ุทุฑู ุชูƒุณุจ ุงู„ A
483
00:35:37,470 --> 00:35:41,670
ู†ุงู‚ุต B ุนู† ุงู„ M ุงู„ู„ูŠ ู‡ูŠ ุชุทุงุจู‚ ุงู„ B mod M ูˆู‡ูƒุฐุง
484
00:35:41,670 --> 00:35:46,550
ุดุฑุทู†ุง ุงู† ุงู„ A C ุชุทุงุจู‚ ุงู„ B C mod M
485
00:35:49,450 --> 00:35:53,290
ุฅู† ู†ุนู…ู„ ู†ู‚ูˆู… ุจุงู„ุงู‚ุชุตุงุฏ ู„ู…ุง ู†ู‚ูˆู„ ุนุงู…ู„ ู…ุดุชุฑูƒ ุงู„ุงุนู„ู‰
486
00:35:53,290 --> 00:35:56,790
ุจูŠู† ุงู„ C ูˆ ุงู„ M ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู„ูƒู† ุบูŠุฑ ู‡ูŠูƒ ู„ุง ู†ูƒูˆู†
487
00:35:56,790 --> 00:36:02,590
ุญุงุถุฑูŠู† ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงู‚ุชุตุงุฏ ูˆ ู‡ุฐู‡ ู‡ูŠ ุงู„ homework
488
00:36:02,590 --> 00:36:08,570
ุงู„ู„ูŠ ู…ุทู„ูˆุจ ุชุญู„ูˆู‡ุง ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ูˆ ุงู„ุซุงู†ูŠ ูˆ ุงู„ุซุงู„ุซ ูˆ ุฅู†
489
00:36:08,570 --> 00:36:12,970
ุดุงุก ุงู„ู„ู‡ ุฅู„ู‰ ู„ู‚ุงุก ุขุฎุฑ ููŠ ู…ุญุงุถุฑุฉ ุฃุฎุฑู‰ ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
490
00:36:12,970 --> 00:36:13,470
ูˆ ุฑุญู…ุฉ ุงู„ู„ู‡