File size: 4,911 Bytes
c511950 b3fb022 d064b29 b3fb022 d064b29 11d1c1f d064b29 b3fb022 d064b29 b3fb022 d064b29 b3fb022 d064b29 b3fb022 d064b29 b3fb022 d064b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: mit
---
# Flood Detection Dataset
## Quick Start
```python
# Example: Loading and filtering data for Dolo Ado in SE Ethiopia, one of the sites explored in our paper (4.17°N, 42.05°E)
import pandas as pd
import rasterio
# Load parquet data
df = pd.read_parquet('N03/N03E042/N03E042-post-processing.parquet')
# Apply recommended filters
filtered_df = df[
(df.dem_metric_2 < 10) &
(df.soil_moisture_sca > 1) &
(df.soil_moisture_zscore > 1) &
(df.soil_moisture > 20) &
(df.temp > 0) &
(df.land_cover != 60) &
(df.edge_false_positives == 0)
]
# Load corresponding geotiff
with rasterio.open('N03/N03E042/N03E042-90m-buffer.tif') as src:
flood_data = src.read(1) # Read first band
```
## Overview
This dataset provides flood detection data from satellite observations. Each geographic area is divided into 3° × 3° tiles (approximately 330km × 330km at the equator).
### What's in each tile?
1. **Parquet file** (post-processing.parquet): Contains detailed observations with timestamps, locations, and environmental metrics
2. **90-meter buffer geotiff** (90m-buffer.tif): Filtered flood extent with 90m safety buffer
3. **240-meter buffer geotiff** (240m-buffer.tif): Filtered flood extent with wider 240m safety buffer
Note: for some tiles, there are no flood detections after the filtering is applied. In these cases, you will see a parquet file but no geotiffs.
## Finding Your Area of Interest
1. Identify the coordinates of your area
2. Round down to the nearest 3 degrees for both latitude and longitude
3. Use these as the filename. For example:
- For Dolo Ado (4.17°N, 42.05°E)
- Round down to (3°N, 42°E)
- Look for file `N03E042` in the `N03` folder
## Directory Structure
```
├── N03 # Main directory by latitude
│ ├── N03E042 # Subdirectory for specific tile
│ │ ├── N03E042-post-processing.parquet # Tabular data
│ │ ├── N03E042-90m-buffer.parquet # Geotiff with 90m buffer
│ │ └── N03E042-240m-buffer.tif # Geotiff with 240m buffer
```
## Data Description
### Parquet File Schema
| Column | Type | Description | Example Value |
|--------|------|-------------|---------------|
| year | int | Year of observation | 2023 |
| month | int | Month of observation | 7 |
| day | int | Day of observation | 15 |
| lat | float | Latitude of detection | 27.842 |
| lon | float | Longitude of detection | 30.156 |
| filename | str | Sentinel-1 source file | 'S1A_IW_GRDH_1SDV...' |
| land_cover | int | ESA WorldCover class | 40 |
| dem_metric_1 | float | Pixel slope | 2.5 |
| dem_metric_2 | float | Max slope within 240m | 5.8 |
| soil_moisture | float | LPRM soil moisture % | 35.7 |
| soil_moisture_zscore | float | Moisture anomaly | 2.3 |
| soil_moisture_sca | float | SCA soil moisture % | 38.2 |
| soil_moisture_sca_zscore | float | SCA moisture anomaly | 2.1 |
| temp | float | Avg daily min temp °C | 22.4 |
| edge_false_positives | int | Edge effect flag (0=no, 1=yes) | 0 |
### Land Cover Classes
Common values in the `land_cover` column:
- 10: Tree cover
- 20: Shrubland
- 30: Grassland
- 40: Cropland
- 50: Urban/built-up
- 60: Bare ground (typically excluded)
- 70: Snow/Ice
- 80: Permanent Water bodies (excluded in this dataset)
- 90: Wetland
## Recommended Filtering
To reduce false positives, apply these filters:
```python
recommended_filters = {
'dem_metric_2': '< 10', # Exclude steep terrain
'soil_moisture_sca': '> 1', # Ensure meaningful soil moisture
'soil_moisture_zscore': '> 1', # Above normal moisture
'soil_moisture': '> 20', # Sufficient moisture present
'temp': '> 0', # Above freezing
'land_cover': '!= 60', # Exclude bare ground
'edge_false_positives': '= 0' # Remove edge artifacts
}
```
## Spatial Resolution
Current data resolution (as of Oct 31, 2024):
- ✅ Africa: 20-meter resolution
- ✅ South America: 20-meter resolution
- ⏳ Rest of world: 30-meter resolution
- Update to 20-meter expected later this year
## Common Issues and Solutions
1. **Edge Effects**: If you see suspicious linear patterns near tile edges, use the `edge_false_positives` filter
2. **Desert Areas**: Consider stricter soil moisture thresholds in arid regions
3. **Mountain Regions**: You may need to adjust `dem_metric_2` threshold based on your needs
## Known Limitations
- Detection quality may be reduced in urban areas and areas with dense vegetation cover
- While we try to control for false positives, certain soil types can still lead to false positives
## Citation
If you use this dataset, please cite our paper: [Paper citation to be added]
## Questions or Issues?
Please open an issue on our GitHub repository at https://github.com/microsoft/ai4g-flood or contact us at [amitmisra@microsoft.com] |