import csv import os import json import datasets _CITATION = """ TBD """ _DESCRIPTION = """\ ALORESB is a collection of african speech corpus for ASR Task. """ _DL_URL_FORMAT = "audio/{name}" class AloresbConfig(datasets.BuilderConfig): """BuilderConfig for aloresb""" def __init__( self, name, **kwargs ): """ Args: name: name of the configuration **kwargs: keyword arguments forwarded to super. """ super(AloresbConfig, self).__init__( version=datasets.Version("1.0.0", ""), name=name, **kwargs) self.data_root_url = _DL_URL_FORMAT.format(name=name) class Aloresb(datasets.GeneratorBasedBuilder): """ The Aloresb dataset """ BUILDER_CONFIGS = [ AloresbConfig(name="fongbe", description="Fongbe aloresb dataset"), AloresbConfig(name="hausa", description="Hausa aloresb dataset"), AloresbConfig(name="ahmaric", description="Ahmaric aloresb dataset"), AloresbConfig(name="wolof", description="Wolof aloresb dataset"), AloresbConfig(name="swahili", description="Swahili aloresb dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file": datasets.Value("string"), "text": datasets.Value("string"), "audio_id": datasets.Value("string"), } ), supervised_keys=("file", "text"), task_templates=None, ) def _split_generators(self, dl_manager): """ Returns SplitGenerators. """ if self.config.name in ["hausa", "wolof"]: transcripts = dl_manager.download({ "train": self.config.data_root_url + "/train/transcripts.txt", "dev": self.config.data_root_url + "/dev/transcripts.txt", "test": self.config.data_root_url + "/test/transcripts.txt", }) audio_filenames_paths = dl_manager.download({ "train": self.config.data_root_url + "/train/audio_filenames.txt", "dev": self.config.data_root_url + "/dev/audio_filenames.txt", "test": self.config.data_root_url + "/test/audio_filenames.txt", }) else: transcripts = dl_manager.download({ "train": self.config.data_root_url + "/train/transcripts.txt", "test": self.config.data_root_url + "/test/transcripts.txt", }) audio_filenames_paths = dl_manager.download({ "train": self.config.data_root_url + "/train/audio_filenames.txt", "test": self.config.data_root_url + "/test/audio_filenames.txt", }) audio_archives = {} for split in audio_filenames_paths: if os.path.exists(audio_filenames_paths[split]): with open(audio_filenames_paths[split], encoding="utf-8") as f: audio_filenames = [line.strip() for line in f.readlines()] audio_archives[split] = dl_manager.download([ self.config.data_root_url + "/" + split + "/audio/" + filename for filename in audio_filenames ]) # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files: local_extracted_archives = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {} train_splits = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "transcript_path": transcripts["train"], "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]], "local_extracted_archive": local_extracted_archives.get("train"), } ), ] if self.config.name in ["hausa", "wolof"]: return train_splits + [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "transcript_path": transcripts["dev"], "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]], "local_extracted_archive": local_extracted_archives.get("dev"), } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "transcript_path": transcripts["test"], "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["test"]], "local_extracted_archive": local_extracted_archives.get("test"), } ), ] return train_splits + [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "transcript_path": transcripts["test"], "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["test"]], "local_extracted_archive": local_extracted_archives.get("test"), } ), ] def _generate_examples(self, transcript_path, audio_archives, local_extracted_archive): """ Generate examples as dicts. """ transcripts = {} with open(transcript_path, encoding="utf-8") as f: for line in f: audio_id, text = line.strip().split("\t") transcripts[audio_id] = text for archive_idx, audio_archive in enumerate(audio_archives): for audio_filename, file in audio_archive: # get the audio_filename extension ext = os.path.splitext(audio_filename)[1] audio_id = audio_filename.split(ext)[0] audio_transcript = transcripts[audio_id] local_audio_file_path = os.path.join( local_extracted_archive[archive_idx], audio_filename ) if local_extracted_archive else None yield audio_filename, { "file": local_audio_file_path, # "audio": { # "path": local_audio_file_path if local_audio_file_path else audio_filename, # "bytes": file.read() # }, "text": audio_transcript, "audio_id": audio_id }