Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
File size: 13,489 Bytes
8c1b8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6edf53
8c1b8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6edf53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1b8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6edf53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1b8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6edf53
 
 
 
8c1b8b2
 
 
 
 
df91a3f
8c1b8b2
 
 
 
 
 
df91a3f
 
8c1b8b2
 
df91a3f
8c1b8b2
 
f6edf53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1b8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6edf53
 
 
 
 
 
 
 
 
 
 
 
8c1b8b2
 
 
 
 
 
f6edf53
 
 
 
8c1b8b2
 
 
df91a3f
8c1b8b2
df91a3f
 
8c1b8b2
 
df91a3f
8c1b8b2
 
 
df91a3f
 
8c1b8b2
df91a3f
 
8c1b8b2
df91a3f
8c1b8b2
f6edf53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from typing import List
import os
import csv
import ast
import gzip

import datasets
from datasets.utils.logging import get_logger

logger = get_logger(__name__)

_URL = "https://asappresearch.github.io/slue-toolkit/"

_DL_URLS = {
    "slue-hvb": "data/slue-hvb_blind.zip",
    "slue-sqa5": "data/slue-sqa5_blind.zip",
}

_LICENSE = """
=======================================================
The license of this script
MIT License
Copyright (c) 2023 ASAPP Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
=======================================================
SLUE-HVB dataset contains a subset of the Gridspace-Stanford Harper Valley speech dataset and the copyright of this subset remains the same with the original license, CC-BY-4.0. See also original license notice (https://github.com/cricketclub/gridspace-stanford-harper-valley/blob/master/LICENSE)

Additionally, we provide dialog act classification annotation and it is covered with the same license as CC-BY-4.0.
=======================================================
SLUE-SQA-5 Dataset

SLUE-SQA-5 Dataset contains question texts and answer strings (question_text, normalized_question_text, and answer_spans column in .tsv files) from these datasets,
            * SQuAD1.1            (for questions whose question_id starts with ‘squad-’)
            * Natural Questions            (for questions whose question_id starts with ‘nq-’)
            * WebQuestions            (for questions whose question_id starts with ‘wq-’)
            * CuratedTREC            (for questions whose question_id starts with ‘trec-’)
            * TriviaQA            (for questions whose question_id starts with ‘triviaqa-’)
Additionally, we provide audio recordings (.wav files in “question” directories) of these questions.

For questions from TriviaQA (questions whose question_id starts with ‘triviaqa-’), their question texts, answer strings, and audio recordings are licensed with the same Apache License 2.0 as TriviaQA (for more detail, please refer to https://github.com/mandarjoshi90/triviaqa/blob/master/LICENSE).
For questions from the other 4 datasets, their question texts, answer strings, and audio recordings are licensed with Creative Commons Attribution-ShareAlike 4.0 International license.

SLUE-SQA-5 also contains a subset of Spoken Wikipedia, including the audios placed in “document” directories and their transcripts (document_text and normalized_document_text column in .tsv files). Additionally, we provide the text-to-speech alignments (.txt files in “word2time” directories).These contents are licensed with the same Creative Commons (CC BY-SA 4.0) license as Spoken Wikipedia.
=======================================================

"""

_CITATION = """\
@inproceedings{shon2023slue_phase2,
  title={SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks},
  author={Shon, Suwon and Arora, Siddhant and Lin, Chyi-Jiunn and Pasad, Ankita and Wu, Felix and Sharma, Roshan and Wu, Wei-Lun and Lee, Hung-Yi and Livescu, Karen and Watanabe, Shinji},
  booktitle={ACL},
  year={2023},
}
"""

_DESCRIPTION = """\
Spoken Language Understanding Evaluation (SLUE) benchmark Phase 2.
"""

def parse_qa_answer_spans(answer_spans):
    answer_spans = ast.literal_eval(answer_spans)
    return [{"answer": a, "start_second": s, "end_second": e} for a, s, e in answer_spans]

def load_word2time(word2time_file):
    word2time = []
    with open(word2time_file, "r") as f:
        for line in f.readlines():
            entity = line.strip().split('\t')
            if len(entity)==1:
                word = entity[0]
                normalized_word, start_sec, end_sec = "", -1.0, -1.0
            else:
                word, normalized_word, start_sec, end_sec = entity
                start_sec, end_sec = float(start_sec), float(end_sec)
            word2time.append(
                    {
                        "word": word,
                        "normalized_word": normalized_word,
                        "start_second": start_sec,
                        "end_second": end_sec,
                    }
                )
    return word2time

class SLUE2Config(datasets.BuilderConfig):
    """BuilderConfig for SLUE."""

    def __init__(self, **kwargs):
        """
        Args:
          data_dir: `string`, the path to the folder containing the files in the
            downloaded .tar
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          **kwargs: keyword arguments forwarded to super.
        """
        super(SLUE2Config, self).__init__(
            version=datasets.Version("2.4.0", ""), **kwargs
        )


class SLUE2(datasets.GeneratorBasedBuilder):
    """Librispeech dataset."""

    DEFAULT_WRITER_BATCH_SIZE = 256
    DEFAULT_CONFIG_NAME = "hvb"
    BUILDER_CONFIGS = [
        SLUE2Config(
            name="hvb",
            description="SLUE-HVB set.",
        ),
        SLUE2Config(
            name="sqa5",
            description="SLUE-SQA-5 set which includes Spoken Question Answering task.",
        ),
    ]

    def _info(self):
        if self.config.name == "hvb":
            features = {
                "issue_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000),
                "speaker_id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "utt_index": datasets.Value("int32"),
                "channel": datasets.Value("int32"),
                "role": datasets.Value("string"),
                "start_ms": datasets.Value("int32"),
                "duration_ms": datasets.Value("int32"),
                "intent": datasets.Value("string"),
                "dialog_acts": datasets.Sequence(
                    datasets.Value("string"),
                ),
            }
        elif self.config.name == "sqa5":
            features = {
                    "question_id": datasets.Value("string"),
                    "question_audio": datasets.Audio(sampling_rate=16_000),
                    "question_speaker_id": datasets.Value("string"),
                    "raw_question_text": datasets.Value("string"),
                    "normalized_question_text": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "document_audio": datasets.Audio(sampling_rate=16_000),
                    "document_speaker_id": datasets.Value("string"),
                    "raw_document_text": datasets.Value("string"),
                    "normalized_document_text": datasets.Value("string"),
                    "word2time": datasets.Sequence(
                        {
                            "word": datasets.Value("string"),
                            "normalized_word": datasets.Value("string"),
                            "start_second": datasets.Value("float64"),
                            "end_second": datasets.Value("float64"),
                        }
                    ),
                    "answer_spans": datasets.Sequence(
                        {
                            "answer": datasets.Value("string"),
                            "start_second": datasets.Value("float64"),
                            "end_second": datasets.Value("float64"),
                        }
                    ),
            }
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=("file", "text"),
            homepage=_URL,
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:

        config_name = f"slue-{self.config.name}"

        dl_dir = dl_manager.download_and_extract(_DL_URLS[config_name])
        data_dir = os.path.join(dl_dir, config_name)
        print(data_dir)

        splits = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(
                        data_dir or "", f"{config_name}_fine-tune.tsv"
                    ),
                    "data_dir": data_dir,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir or "", f"{config_name}_dev.tsv"),
                    "data_dir": data_dir,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(
                        data_dir or "", f"{config_name}_test_blind.tsv"
                    ),
                    "data_dir": data_dir,
                },
            ),
        ]
        if self.config.name == "sqa5":
            splits.append(
                datasets.SplitGenerator(
                    name="verified_test",
                    gen_kwargs={
                        "filepath": os.path.join(
                            data_dir or "", f"{config_name}_verified-test_blind.tsv"
                        ),
                        "data_dir": data_dir,
                    },
                )                                                                     
            )
        return splits

    def _generate_examples(self, filepath, data_dir):
        logger.info(f"generating examples from = {filepath}")

        with open(filepath) as f:
            if self.config.name == "sqa5":
                reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
            else:
                reader = csv.DictReader(f, delimiter="\t")

            for idx, row in enumerate(reader):
                if self.config.name == "hvb":
                    split = "test" if "test" in filepath else "dev" if "dev" in filepath else "fine-tune"
                    audio_file = os.path.join(
                        data_dir, split,
                        f'{row["issue_id"]}_{row["start_ms"]}_{int(row["start_ms"]) + int(row["duration_ms"])}.wav'
                    )
                    example = {
                        "issue_id": row["issue_id"],
                        "audio": audio_file,
                        "speaker_id": row["speaker_id"],
                        "text": row["text"],
                        "utt_index": int(row["utt_index"]),
                        "channel": int(row["channel"]),
                        "role": row["role"],
                        "start_ms": int(row["start_ms"]),
                        "duration_ms": int(row["duration_ms"]),
                        "intent": row["intent"],
                        "dialog_acts": eval(row.get("dialog_acts", "[]")),
                    }
                elif self.config.name == "sqa5":
                    question_audio_file = os.path.join(
                            data_dir, row["split"], "question", row["question_id"] + ".wav"
                            )
                    document_audio_file = os.path.join(
                            data_dir, row["split"], "document", row["document_id"] + ".wav"
                            )
                    word2time_file = os.path.join(
                            data_dir, row["split"], "word2time", row["document_id"] + ".txt"
                            )
                    example = {
                            "question_id": row["question_id"],
                            "question_audio": question_audio_file,
                            "question_speaker_id": row["question_speaker_id"],
                            "raw_question_text": row["question_text"],
                            "normalized_question_text": row["normalized_question_text"],
                            "document_id": row["document_id"],
                            "document_audio": document_audio_file,
                            "document_speaker_id": row["document_speaker_id"],
                            "raw_document_text": row["document_text"],
                            "normalized_document_text": row["normalized_document_text"],
                            "word2time": load_word2time(word2time_file),
                            "answer_spans": parse_qa_answer_spans(row.get("answer_spans", "[]")),
                    }
                yield idx, example