import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2021} } """ _DESCRIPTION = """\ This is a dataset put together to pretrain a language model in Dhivehi, the language of Maldives. """ _HOMEPAGE = "https://huggingface.co/datasets/ashraq/dhivehi-corpus" _LICENSE = "" TRAIN_URL = "train.txt" class DhivehiCorpus(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), }, ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(TRAIN_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, "split": "train", }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf8") as f: id_ = 0 for line in f: yield id_, {"text": line.strip()} id_ += 1