File size: 8,559 Bytes
e2fb2a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# -*- coding: utf-8 -*-
"""MIDI_Images_Solo_Piano_Dataset_Maker.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/15E6o3Y1xPific5RtIZ-1CneHQhts3eEr
# MIDI Images Solo Piano Dataset Maker (ver. 1.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
#### Project Los Angeles
#### Tegridy Code 2024
***
# (SETUP ENVIRONMENT)
"""
# @title Install dependecies
!git clone --depth 1 https://github.com/asigalov61/tegridy-tools
# Commented out IPython magic to ensure Python compatibility.
#@title Import all needed modules
print('=' * 70)
print('Loading core modules...')
print('Please wait...')
print('=' * 70)
import os
import copy
import math
import statistics
import random
import pickle
import shutil
from itertools import groupby
from collections import Counter
from sklearn.metrics import pairwise_distances
from sklearn import metrics
from joblib import Parallel, delayed, parallel_config
import numpy as np
from tqdm import tqdm
from PIL import Image
import matplotlib.pyplot as plt
print('Done!')
print('=' * 70)
print('Creating I/O dirs...')
if not os.path.exists('/content/Dataset'):
os.makedirs('/content/Dataset')
print('Done!')
print('=' * 70)
print('Loading tegridy-tools modules...')
print('=' * 70)
# %cd /content/tegridy-tools/tegridy-tools
import TMIDIX
import TMELODIES
import TPLOTS
import HaystackSearch
# %cd /content/
print('=' * 70)
print('Done!')
print('=' * 70)
"""# (DOWNLOAD SAMPLE MIDI DATASET)"""
# Commented out IPython magic to ensure Python compatibility.
# @title Download sample MIDI dataset (POP909)
# %cd /content/Dataset/
!git clone --depth 1 https://github.com/music-x-lab/POP909-Dataset
# %cd /content/
#@title Save file list
###########
print('=' * 70)
print('Loading MIDI files...')
print('This may take a while on a large dataset in particular...')
dataset_addr = '/content/Dataset/'
# os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
filez += [os.path.join(dirpath, file) for file in filenames if file.endswith('.mid') or file.endswith('.midi') or file.endswith('.kar')]
print('=' * 70)
if filez == []:
print('Could not find any MIDI files. Please check Dataset dir...')
print('=' * 70)
print('Randomizing file list...')
random.shuffle(filez)
print('Done!')
print('=' * 70)
print('Total found MIDI files:', len(filez))
print('=' * 70)
TMIDIX.Tegridy_Any_Pickle_File_Writer(filez, 'filez')
print('=' * 70)
"""# (LOAD TMIDIX MIDI PROCESSOR)"""
#@title Load TMIDIX MIDI processor
print('=' * 70)
print('TMIDIX MIDI Processor')
print('=' * 70)
print('Loading...')
###########
def TMIDIX_MIDI_Processor(midi_file):
fn = os.path.basename(midi_file)
fn1 = fn.split('.mid')[0]
try:
#=======================================================
# START PROCESSING
raw_score = TMIDIX.midi2single_track_ms_score(midi_file)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=256)
sp_escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False))
if sp_escore_notes:
bmatrix = TMIDIX.escore_notes_to_binary_matrix(sp_escore_notes)
return [fn1, bmatrix]
else:
return [fn1, []]
#=======================================================
except Exception as ex:
print('WARNING !!!')
print('=' * 70)
print('Bad MIDI:', midi_file)
print('Error detected:', ex)
print('=' * 70)
return None
print('Done!')
print('=' * 70)
"""# (PROCESS MIDIs)"""
#@title Process MIDIs with TMIDIX MIDI processor
output_folder = "/content/MIDI-Images/" # @param {"type":"string"}
NUMBER_OF_PARALLEL_JOBS = 4 # Number of parallel jobs
NUMBER_OF_FILES_PER_ITERATION = 4 # Number of files to queue for each parallel iteration
SAVE_EVERY_NUMBER_OF_ITERATIONS = 128 # Save every 2560 files
print('=' * 70)
print('TMIDIX MIDI Processor')
print('=' * 70)
print('Starting up...')
print('=' * 70)
###########
melody_chords_f = []
files_count = 0
print('Processing MIDI files...')
print('Please wait...')
print('=' * 70)
for i in tqdm(range(0, len(filez), NUMBER_OF_FILES_PER_ITERATION)):
with parallel_config(backend='threading', n_jobs=NUMBER_OF_PARALLEL_JOBS, verbose = 0):
output = Parallel(n_jobs=NUMBER_OF_PARALLEL_JOBS, verbose=0)(delayed(TMIDIX_MIDI_Processor)(f) for f in filez[i:i+NUMBER_OF_FILES_PER_ITERATION])
for o in output:
if o is not None:
melody_chords_f.append(o)
if i % (NUMBER_OF_FILES_PER_ITERATION * SAVE_EVERY_NUMBER_OF_ITERATIONS) == 0 and i != 0:
print('SAVING !!!')
print('=' * 70)
print('Saving processed files...')
files_count += len(melody_chords_f)
print('=' * 70)
print('Processed so far:', files_count, 'out of', len(filez), '===', files_count / len(filez), 'good files ratio')
print('=' * 70)
print('Writing images...')
print('Please wait...')
for mat in melody_chords_f:
if mat[1]:
TPLOTS.binary_matrix_to_images(mat[1],
128,
32,
output_folder=output_folder+str(mat[0])+'/',
output_img_prefix=str(mat[0]),
output_img_ext='.png',
verbose=False
)
print('Done!')
print('=' * 70)
melody_chords_f = []
print('SAVING !!!')
print('=' * 70)
print('Saving processed files...')
files_count += len(melody_chords_f)
print('=' * 70)
print('Processed so far:', files_count, 'out of', len(filez), '===', files_count / len(filez), 'good files ratio')
print('=' * 70)
print('Writing images...')
print('Please wait...')
for mat in melody_chords_f:
if mat[1]:
TPLOTS.binary_matrix_to_images(mat[1],
128,
32,
output_folder=output_folder+str(mat[0])+'/',
output_img_prefix=str(mat[0]),
output_img_ext='.png',
verbose=False
)
print('Done!')
print('=' * 70)
"""# (LOAD IMAGES)"""
#@title Load created MIDI images
full_path_to_metadata_pickle_files = "/content/MIDI-Images" #@param {type:"string"}
print('=' * 70)
print('MIDI Images Reader')
print('=' * 70)
print('Searching for images...')
filez = list()
for (dirpath, dirnames, filenames) in os.walk(full_path_to_metadata_pickle_files):
filez += [os.path.join(dirpath, file) for file in filenames if file.endswith('.png')]
print('=' * 70)
filez.sort()
print('Found', len(filez), 'images!')
print('=' * 70)
print('Reading images...')
print('Please wait...')
print('=' * 70)
fidx = 0
all_read_images = []
for img in tqdm(filez):
img = Image.open(img)
img_arr = np.array(img).tolist()
all_read_images.append(img_arr)
fidx += 1
print('Done!')
print('=' * 70)
print('Loaded', fidx, 'images!')
print('=' * 70)
print('Done!')
print('=' * 70)
"""# (TEST IMAGES)"""
# @title Test created MIDI images
print('=' * 70)
image = random.choice(all_read_images)
escore = TMIDIX.binary_matrix_to_original_escore_notes(image)
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(escore)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'MIDI Images',
output_file_name = '/content/MIDI-Images-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
timings_multiplier=256
)
print('=' * 70)
"""# (ZIP IMAGES)"""
# @title Zip created MIDI images
!zip -9 -r POP909_MIDI_Images_128_128_32_BW.zip MIDI-Images/ > /dev/null
"""# Congrats! You did it! :)""" |