# -*- coding: utf-8 -*- """Imagen_MIDI_Images_Solo_Piano_Model_Maker.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/189FJfPRxZ8zrwi44fAR_ywKnMeb73XJJ # Imagen MIDI Images Solo Piano Model Maker (ver. 1.0) *** Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools *** WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/ *** #### Project Los Angeles #### Tegridy Code 2024 *** # (SETUP ENVIRONMENT) """ # @title Install dependecies !git clone --depth 1 https://github.com/asigalov61/tegridy-tools !pip install -U imagen-pytorch !pip install -U huggingface_hub # Commented out IPython magic to ensure Python compatibility. #@title Import all needed modules print('=' * 70) print('Loading core modules...') import os import numpy as np from tqdm import tqdm from huggingface_hub import snapshot_download print('Done!') print('=' * 70) print('Creating I/O dirs...') if not os.path.exists('/content/Dataset'): os.makedirs('/content/Dataset') print('Done!') print('=' * 70) print('Loading tegridy-tools modules...') print('=' * 70) # %cd /content/tegridy-tools/tegridy-tools import TMIDIX import TPLOTS # %cd /content/ print('=' * 70) print('Done!') print('=' * 70) print('Loading Imagen...') import torch from imagen_pytorch import Unet, Imagen, ImagenTrainer from imagen_pytorch.data import Dataset print('Done!') print('=' * 70) print('Torch version:', torch.__version__) print('=' * 70) print('Done!') print('=' * 70) """# (DOWNLOAD DATASET)""" # Commented out IPython magic to ensure Python compatibility. # @title Download and unzip MIDI Images POP909 Solo Piano dataset print('=' * 70) print('Downloading MIDI Images dataset repo...') print('=' * 70) repo_id = "asigalov61/MIDI-Images" repo_type = 'dataset' local_dir = "./MIDI-Images" snapshot_download(repo_id, repo_type=repo_type, local_dir=local_dir) print('=' * 70) print('Done!') print('=' * 70) print('Unzipping POP909 MIDI Images dataset...') print('=' * 70) # %cd /content/Dataset/ !unzip /content/MIDI-Images/POP909_MIDI_Dataset_Solo_Piano_MIDI_Images_128_128_32_BW_Ver_1_CC_BY_NC_SA.zip > /dev/null # %cd /content/ print('=' * 70) print('Done!') print('=' * 70) """# (INIT MODEL)""" # @title Init Imagen model print('=' * 70) print('Instantiating Imagen model...') print('=' * 70) # unets for unconditional imagen unet = Unet( dim = 64, dim_mults = (1, 2, 4, 8), num_resnet_blocks = 1, channels=1, layer_attns = (False, False, False, True), layer_cross_attns = False ) # imagen, which contains the unet above imagen = Imagen( condition_on_text = False, # this must be set to False for unconditional Imagen unets = unet, channels=1, image_sizes = 128, timesteps = 1000 ) trainer = ImagenTrainer( imagen = imagen, split_valid_from_train = True # whether to split the validation dataset from the training ).cuda() print('=' * 70) print('Done!') print('=' * 70) """# (INIT DATASET)""" # @title Prep and init dataset batch_size = 16 # @param {"type":"slider","min":4,"max":64,"step":4} print('=' * 70) print('Instantiating dataloader...') print('=' * 70) # instantiate your dataloader, which returns the necessary inputs to the DDPM as tuple in the order of images, text embeddings, then text masks. in this case, only images is returned as it is unconditional training dataset = Dataset('/content/Dataset', image_size = 128) try: trainer.add_train_dataset(dataset, batch_size = batch_size) except: print('Dataset is ready!') pass print('=' * 70) print('Done!') print('=' * 70) """# (TRAIN MODEL)""" # @title Train Imagen model NUM_EPOCHS = 10 print('=' * 70) print('Training...') print('=' * 70) NUM_STEPS = NUM_EPOCHS * len(dataset) # working training loop epoch = 1 print('=' * 70) print('Epoch #', epoch) print('=' * 70) for i in range(NUM_STEPS): try: loss = trainer.train_step(unet_number = 1, max_batch_size = batch_size) print(f'loss: {loss}', '===', i) if not (i % 50): valid_loss = trainer.valid_step(unet_number = 1, max_batch_size = batch_size) print('=' * 70) print(f'valid loss: {valid_loss}') print('=' * 70) if not (i % 1000) and trainer.is_main: # is_main makes sure this can run in distributed print('=' * 70) images = trainer.sample(batch_size = batch_size // 4, return_pil_images = True) # returns List[Image] images[0].save(f'./sample-{i // 100}.png') print('=' * 70) if not (i % len(dataset)): print('=' * 70) print('Epoch #', epoch) print('=' * 70) except KeyboardInterrupt: print('=' * 70) print('Stopping training...') break print('=' * 70) print('Done!') print('=' * 70) """# (SAVE/LOAD MODEL)""" # @title Save trained model print('=' * 70) print('Saving model...') print('=' * 70) trainer.save('./Imagen_POP909_64_dim_'+str(i)+'_steps_'+str(loss)+'_loss.ckpt') print('=' * 70) print('Done!') print('=' * 70) # @title Load/reload trained model full_path_to_model_checkpoint = "./Imagen_POP909_64_dim_10000_steps_0.01_loss.ckpt" # @param {"type":"string"} print('=' * 70) print('Loading model...') print('=' * 70) unet = Unet( dim = 64, dim_mults = (1, 2, 4, 8), num_resnet_blocks = 1, channels=1, layer_attns = (False, False, False, True), layer_cross_attns = False ) imagen = Imagen( condition_on_text = False, # this must be set to False for unconditional Imagen unets = unet, channels=1, image_sizes = 128, timesteps = 1000 ) trainer = ImagenTrainer( imagen = imagen, split_valid_from_train = True # whether to split the validation dataset from the training ).cuda() trainer.load(full_path_to_model_checkpoint) print('=' * 70) print('Done!') print('=' * 70) """# (GENERATE)""" # @title Generate music number_of_compositions_to_generate = 8 # @param {"type":"slider","min":1,"max":64,"step":1} noise_threshold = 128 # @param {"type":"slider","min":0,"max":255,"step":1} print('=' * 70) print('Imagen Model Generator') print('=' * 70) print('Generating', number_of_compositions_to_generate, 'compositions...') print('=' * 70) images = trainer.sample(batch_size = number_of_compositions_to_generate, return_pil_images = True) print('Done!') print('=' * 70) print('Converting to MIDIs...') imgs_array = [] for idx, image in enumerate(images): print('=' * 70) print('Converting image #', idx) print('=' * 70) arr = np.array(image) farr = np.where(arr < noise_threshold, 0, 1) bmatrix = TPLOTS.images_to_binary_matrix([farr]) score = TMIDIX.binary_matrix_to_original_escore_notes(bmatrix) output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(score) detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, output_signature = 'MIDI Images', output_file_name = '/content/MIDI-Images-Composition_'+str(idx), track_name='Project Los Angeles', list_of_MIDI_patches=patches, timings_multiplier=256 ) print('=' * 70) print('Done!') print('=' * 70) """# Congrats! You did it! :)"""