The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'processing time', 'sub_id', 'status', 'message'}) and 5 missing columns ({'subject_id', 'laterality', 'visit', 't2map_nifti_path', 'dicom_mese_path'}). This happened while the csv dataset builder was generating data using hf://datasets/barma7/oai-t2maps-epgfit/00m/processing_log_EPG_dictionary.csv (at revision 95b92709031199d01ee2a36f689308be1de4a1db) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast sub_id: int64 status: int64 processing time: double message: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 725 to {'subject_id': Value(dtype='int64', id=None), 'visit': Value(dtype='int64', id=None), 'laterality': Value(dtype='string', id=None), 'dicom_mese_path': Value(dtype='string', id=None), 't2map_nifti_path': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1400, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 983, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'processing time', 'sub_id', 'status', 'message'}) and 5 missing columns ({'subject_id', 'laterality', 'visit', 't2map_nifti_path', 'dicom_mese_path'}). This happened while the csv dataset builder was generating data using hf://datasets/barma7/oai-t2maps-epgfit/00m/processing_log_EPG_dictionary.csv (at revision 95b92709031199d01ee2a36f689308be1de4a1db) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
subject_id
int64 | visit
int64 | laterality
string | dicom_mese_path
string | t2map_nifti_path
string |
---|---|---|---|---|
9,000,099 | 0 | RIGHT | 00m/0.E.1/9000099/20050712/10424416 | 00m/9000099 |
9,000,296 | 0 | RIGHT | 00m/0.C.2/9000296/20040909/10693717 | 00m/9000296 |
9,000,622 | 0 | RIGHT | 00m/0.E.1/9000622/20050707/10574215 | 00m/9000622 |
9,000,798 | 0 | RIGHT | 00m/0.C.2/9000798/20040924/10249517 | 00m/9000798 |
9,001,104 | 0 | RIGHT | 00m/0.E.1/9001104/20050825/10498215 | 00m/9001104 |
9,001,400 | 0 | RIGHT | 00m/0.C.2/9001400/20050107/10322417 | 00m/9001400 |
9,001,695 | 0 | RIGHT | 00m/0.C.2/9001695/20050104/10098617 | 00m/9001695 |
9,001,897 | 0 | RIGHT | 00m/0.C.2/9001897/20050203/10350434 | 00m/9001897 |
9,002,116 | 0 | RIGHT | 00m/0.E.1/9002116/20050715/10423914 | 00m/9002116 |
9,002,316 | 0 | LEFT | 00m/0.C.2/9002316/20040831/10119608 | 00m/9002316 |
9,002,411 | 0 | RIGHT | 00m/0.C.2/9002411/20041227/10136717 | 00m/9002411 |
9,002,430 | 0 | RIGHT | 00m/0.E.1/9002430/20050620/10934817 | 00m/9002430 |
9,002,663 | 0 | RIGHT | 00m/0.E.1/9002663/20050602/10541717 | 00m/9002663 |
9,002,817 | 0 | RIGHT | 00m/0.C.2/9002817/20050330/10756617 | 00m/9002817 |
9,003,126 | 0 | RIGHT | 00m/0.E.1/9003126/20050705/10574517 | 00m/9003126 |
9,003,175 | 0 | RIGHT | 00m/0.E.1/9003175/20050616/10927415 | 00m/9003175 |
9,003,316 | 0 | RIGHT | 00m/0.C.2/9003316/20040921/10252017 | 00m/9003316 |
9,003,380 | 0 | RIGHT | 00m/0.C.2/9003380/20050110/10323515 | 00m/9003380 |
9,003,406 | 0 | RIGHT | 00m/0.C.2/9003406/20041118/10296220 | 00m/9003406 |
9,003,430 | 0 | RIGHT | 00m/0.E.1/9003430/20050613/10557217 | 00m/9003430 |
9,003,658 | 0 | RIGHT | 00m/0.E.1/9003658/20050609/10548817 | 00m/9003658 |
9,003,815 | 0 | RIGHT | 00m/0.C.2/9003815/20040910/10698851 | 00m/9003815 |
9,003,895 | 0 | RIGHT | 00m/0.C.2/9003895/20050118/10134419 | 00m/9003895 |
9,004,175 | 0 | RIGHT | 00m/0.E.1/9004175/20050602/10541517 | 00m/9004175 |
9,004,184 | 0 | RIGHT | 00m/0.C.2/9004184/20041217/10313214 | 00m/9004184 |
9,004,315 | 0 | RIGHT | 00m/0.C.2/9004315/20040831/10119817 | 00m/9004315 |
9,004,462 | 0 | RIGHT | 00m/0.C.2/9004462/20040812/10680114 | 00m/9004462 |
9,004,669 | 0 | RIGHT | 00m/0.E.1/9004669/20050714/10420418 | 00m/9004669 |
9,004,905 | 0 | RIGHT | 00m/0.C.2/9004905/20041026/10129117 | 00m/9004905 |
9,005,075 | 0 | RIGHT | 00m/0.E.1/9005075/20050926/10593817 | 00m/9005075 |
9,005,132 | 0 | RIGHT | 00m/0.E.1/9005132/20050719/10427015 | 00m/9005132 |
9,005,321 | 0 | RIGHT | 00m/0.C.2/9005321/20040908/10694717 | 00m/9005321 |
9,005,413 | 0 | RIGHT | 00m/0.C.2/9005413/20041202/10300117 | 00m/9005413 |
9,005,656 | 0 | RIGHT | 00m/0.E.1/9005656/20050719/10427217 | 00m/9005656 |
9,005,905 | 0 | RIGHT | 00m/0.C.2/9005905/20050110/10137517 | 00m/9005905 |
9,005,942 | 0 | RIGHT | 00m/0.E.1/9005942/20050624/10565717 | 00m/9005942 |
9,006,140 | 0 | RIGHT | 00m/0.E.1/9006140/20050630/10407717 | 00m/9006140 |
9,006,407 | 0 | RIGHT | 00m/0.C.2/9006407/20050107/10322617 | 00m/9006407 |
9,006,723 | 0 | RIGHT | 00m/0.C.2/9006723/20050113/10326811 | 00m/9006723 |
9,007,422 | 0 | RIGHT | 00m/0.C.2/9007422/20050103/10524818 | 00m/9007422 |
9,007,827 | 0 | RIGHT | 00m/0.C.2/9007827/20041006/10263614 | 00m/9007827 |
9,007,904 | 0 | RIGHT | 00m/0.C.2/9007904/20050104/10097117 | 00m/9007904 |
9,008,322 | 0 | RIGHT | 00m/0.C.2/9008322/20040903/10123509 | 00m/9008322 |
9,008,561 | 0 | RIGHT | 00m/0.C.2/9008561/20041028/10280111 | 00m/9008561 |
9,008,820 | 0 | RIGHT | 00m/0.C.2/9008820/20040930/10072417 | 00m/9008820 |
9,008,884 | 0 | RIGHT | 00m/0.C.2/9008884/20050204/10173408 | 00m/9008884 |
9,008,934 | 0 | RIGHT | 00m/0.E.1/9008934/20050627/10564717 | 00m/9008934 |
9,009,067 | 0 | RIGHT | 00m/0.C.2/9009067/20041108/10287117 | 00m/9009067 |
9,009,623 | 0 | RIGHT | 00m/0.E.1/9009623/20050525/10741216 | 00m/9009623 |
9,009,716 | 0 | RIGHT | 00m/0.C.2/9009716/20041214/10308317 | 00m/9009716 |
9,009,927 | 0 | RIGHT | 00m/0.E.1/9009927/20050711/10414117 | 00m/9009927 |
9,009,957 | 0 | RIGHT | 00m/0.C.2/9009957/20050110/10137918 | 00m/9009957 |
9,010,060 | 0 | RIGHT | 00m/0.C.2/9010060/20041027/10279517 | 00m/9010060 |
9,010,308 | 0 | RIGHT | 00m/0.C.2/9010308/20040915/10243217 | 00m/9010308 |
9,010,370 | 0 | RIGHT | 00m/0.C.2/9010370/20050104/10321317 | 00m/9010370 |
9,010,952 | 0 | RIGHT | 00m/0.C.2/9010952/20050105/10313517 | 00m/9010952 |
9,011,053 | 0 | RIGHT | 00m/0.C.2/9011053/20050317/10736917 | 00m/9011053 |
9,011,115 | 0 | RIGHT | 00m/0.E.1/9011115/20050801/10450915 | 00m/9011115 |
9,011,420 | 0 | RIGHT | 00m/0.E.1/9011420/20050618/10932721 | 00m/9011420 |
9,011,641 | 0 | RIGHT | 00m/0.E.1/9011641/20050712/10417715 | 00m/9011641 |
9,011,661 | 0 | RIGHT | 00m/0.E.1/9011661/20051006/10536517 | 00m/9011661 |
9,011,918 | 0 | RIGHT | 00m/0.E.1/9011918/20050614/10928817 | 00m/9011918 |
9,011,949 | 0 | RIGHT | 00m/0.C.2/9011949/20050106/10321217 | 00m/9011949 |
9,012,435 | 0 | RIGHT | 00m/0.C.2/9012435/20050128/10347015 | 00m/9012435 |
9,012,867 | 0 | RIGHT | 00m/0.C.2/9012867/20050105/10321712 | 00m/9012867 |
9,013,161 | 0 | RIGHT | 00m/0.E.1/9013161/20060617/11191217 | 00m/9013161 |
9,013,634 | 0 | RIGHT | 00m/0.E.1/9013634/20050721/10436817 | 00m/9013634 |
9,013,798 | 0 | RIGHT | 00m/0.C.2/9013798/20040920/10252217 | 00m/9013798 |
9,013,941 | 0 | RIGHT | 00m/0.C.2/9013941/20050114/10325914 | 00m/9013941 |
9,014,209 | 0 | RIGHT | 00m/0.E.1/9014209/20050606/10547517 | 00m/9014209 |
9,014,797 | 0 | RIGHT | 00m/0.C.2/9014797/20041007/10261714 | 00m/9014797 |
9,014,883 | 0 | RIGHT | 00m/0.C.2/9014883/20050124/10156517 | 00m/9014883 |
9,015,363 | 0 | RIGHT | 00m/0.C.2/9015363/20041220/10311515 | 00m/9015363 |
9,015,402 | 0 | RIGHT | 00m/0.C.2/9015402/20050112/10323217 | 00m/9015402 |
9,015,718 | 0 | RIGHT | 00m/0.E.1/9015718/20050526/10532917 | 00m/9015718 |
9,015,798 | 0 | RIGHT | 00m/0.C.2/9015798/20040915/10243417 | 00m/9015798 |
9,016,121 | 0 | RIGHT | 00m/0.E.1/9016121/20050617/10936017 | 00m/9016121 |
9,016,179 | 0 | RIGHT | 00m/0.C.2/9016179/20041215/10314208 | 00m/9016179 |
9,016,304 | 0 | RIGHT | 00m/0.C.2/9016304/20040917/10242117 | 00m/9016304 |
9,016,403 | 0 | RIGHT | 00m/0.C.2/9016403/20050121/10329014 | 00m/9016403 |
9,016,886 | 0 | RIGHT | 00m/0.C.2/9016886/20050112/10323617 | 00m/9016886 |
9,016,918 | 0 | RIGHT | 00m/0.E.1/9016918/20050623/10564617 | 00m/9016918 |
9,017,252 | 0 | RIGHT | 00m/0.C.2/9017252/20041209/10306517 | 00m/9017252 |
9,017,419 | 0 | RIGHT | 00m/0.C.2/9017419/20050624/10565935 | 00m/9017419 |
9,017,876 | 0 | RIGHT | 00m/0.C.2/9017876/20050111/10136817 | 00m/9017876 |
9,017,909 | 0 | RIGHT | 00m/0.E.1/9017909/20050729/10451817 | 00m/9017909 |
9,018,291 | 0 | RIGHT | 00m/0.C.2/9018291/20040917/10242417 | 00m/9018291 |
9,018,389 | 0 | RIGHT | 00m/0.C.2/9018389/20050113/10324834 | 00m/9018389 |
9,018,489 | 0 | RIGHT | 00m/0.C.2/9018489/20040809/10675910 | 00m/9018489 |
9,019,287 | 0 | RIGHT | 00m/0.C.2/9019287/20040913/10698114 | 00m/9019287 |
9,019,406 | 0 | RIGHT | 00m/0.E.1/9019406/20050617/10934217 | 00m/9019406 |
9,019,907 | 0 | RIGHT | 00m/0.E.1/9019907/20050706/10575617 | 00m/9019907 |
9,020,404 | 0 | RIGHT | 00m/0.E.1/9020404/20050706/10575417 | 00m/9020404 |
9,020,714 | 0 | RIGHT | 00m/0.C.2/9020714/20050203/10350818 | 00m/9020714 |
9,020,856 | 0 | RIGHT | 00m/0.C.2/9020856/20050103/10320117 | 00m/9020856 |
9,020,999 | 0 | RIGHT | 00m/0.C.2/9020999/20040803/10236910 | 00m/9020999 |
9,021,102 | 0 | RIGHT | 00m/0.E.1/9021102/20050726/10439915 | 00m/9021102 |
9,021,195 | 0 | RIGHT | 00m/0.E.1/9021195/20050531/10534711 | 00m/9021195 |
9,021,428 | 0 | RIGHT | 00m/0.C.2/9021428/20050118/10134617 | 00m/9021428 |
9,021,791 | 0 | RIGHT | 00m/0.C.2/9021791/20040922/10250914 | 00m/9021791 |
Osteoarthritis Initiative (OAI) T2 Maps – EPG Fit Dataset
This dataset repository contains T2 maps derived from the Multi-Echo Spin-Echo (MESE) MRI data in the Osteoarthritis Initiative (OAI). The maps were generated specifically for cartilage regions using the Extended Phase Graph (EPG) formalism, which improves the accuracy and reproducibility of cartilage T2 mapping, as detailed in the work of Marco Barbieri, Anthony A. Gatti, and Feliks Kogan (2024) https://doi.org/10.1002/jmri.29646.
The graphical abstract of the work is reported below, showing that EPG modeling improved reproducibility in cartilage T2 in a cohort of healthy subjects from the OAI dataset.
Dataset Structure
Files and Folders
The dataset is organized by acquisition timepoints. Each main folder represents a timepoint in the OAI dataset and contains subfolders for individual subjects.
- Timepoints:
00m
,12m
,24m
,36m
,48m
,72m
,96m
. - Subject folders: Each folder name is the unique OAI subject ID (e.g.,
9000099
).
Within each subject folder:
t2.nii.gz
: The T2 map computed using the EPG dictionary fitting method, specific to cartilage regions.r2.nii.gz
: The r-squared value of the fit (goodness of fit).
MESE Data Location Files
For each acquisition timepoint (e.g., 00_month_mese_locations.csv
, 12_month_mese_locations.csv
, etc), a CSV file provides a mapping to the original MESE data within the OAI dataset. Each CSV file includes the following columns:
- subject_id: The unique identifier for each OAI subject.
- visit: The month corresponding to the acquisition timepoint (e.g., 36 for
36m
). - laterality: Indicates whether the MESE data is from the RIGHT or LEFT knee.
- dicom_mese_path: The relative path to the original DICOM MESE data within the OAI dataset.
- t2map_nifti_path: The relative path to the computed T2 map for that subject, located in this dataset.
These CSV files help researchers locate the original MESE DICOM data within the OAI dataset, which may be useful for referencing or aligning with other imaging modalities.
Features
- Subject ID (str): Unique identifier for each subject in the OAI study.
- T2 Map (
t2.nii.gz
): Computed T2 map for cartilage using the EPG fitting method. - R-Squared Map (
r2.nii.gz
): Fit accuracy metric for the T2 computation.
Cartilage-Specific T2 Mapping
The T2 map in this dataset is provided only for cartilage regions, as the EPG model used in the computation is specifically designed for cartilage MR properties. To speed up computation, we have exploited segmented cartilage regions from the femoral, tibial, and patellar regions. Here’s the complete mapping process:
Cartilage Segmentation: For each subject, the femoral, tibial, and patellar cartilage were segmented from the corresponding Double Echo Steady State (DESS) image using the ShapeMedKneeModel.
Registration to MESE Images: The segmented cartilage masks were then registered to the MESE images using Elastix, ensuring anatomical alignment across sequences.
Dilated Mask for T2 Mapping: A dilated version of the cartilage mask was used during the T2 mapping process to allow researchers the flexibility to apply their segmentations if desired. This ensures that cartilage boundaries are fully captured while also accounting for anatomical variations.
The cartilage segmentations used for the OAI dataset are available in the public repository ShapeMedKnee and will be regularly maintained and updated there.
Dataset Creation
The T2 maps in this dataset were generated from the MESE data in the OAI dataset using the Extended Phase Graph (EPG) fitting method as described in the work by Barbieri, Gatti, and Kogan, published in Journal of Magnetic Resonance Imaging (2024). The code used to perform this fitting is open-source and accessible on GitHub at EPGfit_for_cartilage_T2_mapping.
Getting Started
Installation
You can install and access the dataset using the datasets
library:
pip install datasets
Usage
Load and interact with the dataset in Python:
from datasets import load_dataset
dataset = load_dataset("barma7/oai-t2maps-epgfit")
# Accessing a specific timepoint and subject data
print(dataset["00m"]["9000099"]["t2"])
print(dataset["00m"]["9000099"]["r2"])
Dataset Details
- File Size: Each T2 map file (
t2.nii.gz
) and r-squared file (r2.nii.gz
) are stored in compressed.nii.gz
format, with sizes varying per subject and time point. - Number of Samples: Covers subjects across seven OAI acquisition timepoints for which MESE was available.
- File Format:
.nii.gz
files.
License
This dataset is licensed under the MIT License, which allows for free use, modification, and distribution with attribution. For full license details, please see the LICENSE file in this repository.
Acknowledgments
This dataset was created based on the Osteoarthritis Initiative (OAI) dataset. The authors of this repository acknowledge the original OAI study and the contributions of all OAI collaborators.
Citation
If you use this dataset in your research, please cite:
Barbieri, M., Gatti, A.A. and Kogan, F. (2024), Improving Accuracy and Reproducibility of Cartilage T2 Mapping in the OAI Dataset Through Extended Phase Graph Modeling. J Magn Reson Imaging. https://doi.org/10.1002/jmri.29646
- Downloads last month
- 63