|
import os |
|
from glob import glob |
|
|
|
import datasets |
|
import json |
|
from PIL import Image |
|
|
|
_DESCRIPTION = """\ |
|
Watermark Dataset |
|
""" |
|
|
|
_VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
class WatermarkPitaConfig(datasets.BuilderConfig): |
|
"""Builder Config for Food-101""" |
|
|
|
def __init__(self, urls, categories, **kwargs): |
|
"""BuilderConfig for Food-101. |
|
|
|
Args: |
|
repository: `string`, the name of the repository. |
|
urls: `dict<string, string>`, the urls to the data. |
|
categories: `list<string>`, the categories of the data. |
|
|
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
_VERSION = datasets.Version("1.0.0") |
|
|
|
super(WatermarkPitaConfig, self).__init__(version=_VERSION, **kwargs) |
|
self.urls = urls |
|
self.categories = categories |
|
|
|
|
|
class WatermarkPita(datasets.GeneratorBasedBuilder): |
|
"""Watermark Dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
WatermarkPitaConfig( |
|
name="text", |
|
urls={"train": "data/text/train.zip", "valid": "data/text/valid.zip"}, |
|
categories=["text"], |
|
), |
|
WatermarkPitaConfig( |
|
name="logo", |
|
urls={"train": "data/logo/train.zip", "valid": "data/logo/valid.zip"}, |
|
categories=["logo"], |
|
), |
|
WatermarkPitaConfig( |
|
name="mixed", |
|
urls={"train": "data/mixed/train.zip", "valid": "data/mixed/valid.zip"}, |
|
categories=["logo", "text"], |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "text" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"objects": datasets.Sequence( |
|
{ |
|
"x": datasets.Value("float32"), |
|
"y": datasets.Value("float32"), |
|
"w": datasets.Value("float32"), |
|
"h": datasets.Value("float32"), |
|
"label": datasets.ClassLabel(names=self.config.categories), |
|
} |
|
), |
|
} |
|
), |
|
description=_DESCRIPTION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(self.config.urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split": "train", "data_dir": data_dir["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split": "valid", "data_dir": data_dir["valid"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
image_dir = os.path.join(data_dir, "images") |
|
label_dir = os.path.join(data_dir, "labels") |
|
|
|
image_paths = sorted(glob(image_dir + "/*.jpg")) |
|
label_paths = sorted(glob(label_dir + "/*.json")) |
|
|
|
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)): |
|
with open(label_path, "r") as f: |
|
bboxes = json.load(f) |
|
|
|
objects = [] |
|
for bbox in bboxes: |
|
objects.append( |
|
{ |
|
"x": bbox["x"], |
|
"y": bbox["y"], |
|
"w": bbox["width"], |
|
"h": bbox["height"], |
|
"label": bbox["label"], |
|
} |
|
) |
|
objects.append(bbox) |
|
|
|
yield idx, {"image": image_path, "objects": objects} |
|
|