|
from argparse import Namespace |
|
import json |
|
from pathlib import Path |
|
from typing import Tuple, List, Dict |
|
|
|
import gym |
|
import torch |
|
import numpy as np |
|
|
|
import babyai.utils as utils |
|
import babyai_sr.utils as utils_sr |
|
from babyai_sr.arguments import ArgumentParser |
|
from babyai_sr.rl.algos import TestAlgo, BaseAlgo |
|
from babyai_sr.rl.utils import ParallelEnv |
|
import util as lib_util |
|
|
|
|
|
|
|
SENDER = 0 |
|
RECEIVER = 1 |
|
|
|
|
|
def extract_messages(message, done, active) -> List[List[int]]: |
|
argmax_messages = message.argmax(-1)[:, :, SENDER] |
|
done_np = done.cpu().numpy() |
|
done_idxs = np.argwhere(done_np) |
|
message_list = [] |
|
for i in range(done_idxs.shape[0]): |
|
prev_end = done_idxs[i - 1] if i > 0 else [0, -1] |
|
end = done_idxs[i] |
|
|
|
|
|
if prev_end[0] != end[0]: |
|
prev_end = [end[0], -1] |
|
|
|
indexer = np.s_[prev_end[0], prev_end[1] + 1 : (end[1] + 1)] |
|
ep_messages = argmax_messages[indexer] |
|
|
|
|
|
|
|
ep_active = active[indexer][:, SENDER] |
|
final_ep_messages = ep_messages[ep_active] |
|
message_list.append(final_ep_messages.cpu().tolist()) |
|
return message_list |
|
|
|
|
|
class TestAlgo(BaseAlgo): |
|
def __init__( |
|
self, |
|
env, |
|
models, |
|
num_frames_per_proc=40, |
|
discount=0.99, |
|
gae_lambda=0.99, |
|
preprocess_obss=None, |
|
reshape_reward=None, |
|
use_comm=True, |
|
conventional=False, |
|
argmax=True, |
|
): |
|
|
|
super().__init__( |
|
env, |
|
models, |
|
num_frames_per_proc, |
|
discount, |
|
gae_lambda, |
|
preprocess_obss, |
|
reshape_reward, |
|
use_comm, |
|
conventional, |
|
argmax, |
|
) |
|
|
|
def collect_episodes(self, episodes): |
|
|
|
exps, _ = self.collect_experiences() |
|
batch = 1 |
|
|
|
shape_prefix = (self.num_procs, self.num_frames_per_proc) |
|
|
|
active = exps.active.view(*shape_prefix, *exps.active.shape[1:]) |
|
done = exps.done.view(*shape_prefix, *exps.done.shape[1:]) |
|
message = exps.message.view(*shape_prefix, *exps.message.shape[1:]) |
|
reward = exps.reward.view(*shape_prefix, *exps.reward.shape[1:]) |
|
|
|
log = { |
|
"return_per_episode": [], |
|
} |
|
|
|
proc = 0 |
|
frame = [0] * self.num_procs |
|
episodes_done = 0 |
|
while True: |
|
if done[proc, frame[proc]]: |
|
episodes_done += 1 |
|
log["return_per_episode"].append( |
|
reward[proc, frame[proc], RECEIVER].item() |
|
) |
|
if episodes_done == episodes: |
|
break |
|
frame[proc] += 1 |
|
proc = (proc + 1) % self.num_procs |
|
else: |
|
frame[proc] += 1 |
|
|
|
if frame[proc] == batch * self.num_frames_per_proc: |
|
exps, _ = self.collect_experiences() |
|
batch += 1 |
|
|
|
next_active = exps.active.view(*shape_prefix, *exps.active.shape[1:]) |
|
next_done = exps.done.view(*shape_prefix, *exps.done.shape[1:]) |
|
next_message = exps.message.view(*shape_prefix, *exps.message.shape[1:]) |
|
next_reward = exps.reward.view(*shape_prefix, *exps.reward.shape[1:]) |
|
|
|
active = torch.cat((active, next_active), 1) |
|
done = torch.cat((done, next_done), 1) |
|
message = torch.cat((message, next_message), 1) |
|
reward = torch.cat((reward, next_reward), 1) |
|
|
|
message_list = extract_messages(message, done, active) |
|
|
|
return message_list, log |
|
|
|
|
|
|
|
|
|
|
|
def parse_args() -> Namespace: |
|
parser = ArgumentParser() |
|
parser.add_argument("--name", help="name of the configuration") |
|
parser.add_argument("--sender", default=None, help="name of the sender (REQUIRED)") |
|
parser.add_argument( |
|
"--receiver", default=None, help="name of the receiver (REQUIRED)" |
|
) |
|
parser.add_argument( |
|
"--sample", |
|
action="store_true", |
|
default=False, |
|
help="sample messages instead of using argmax", |
|
) |
|
parser.add_argument( |
|
"--episodes", |
|
type=int, |
|
default=1000, |
|
help="number of episodes to test on (default: 1000)", |
|
) |
|
parser.add_argument("--len-message", default=None, help="dummy") |
|
parser.add_argument("--num-symbols", default=None, help="dummy") |
|
return parser.parse_args() |
|
|
|
|
|
def get_episodes(args: Namespace) -> Tuple[List, Dict]: |
|
utils.seed(args.seed) |
|
envs = [] |
|
for i in range(args.procs): |
|
env = gym.make(args.env) |
|
env.seed(100 * args.seed + i) |
|
envs.append(env) |
|
penv = ParallelEnv( |
|
envs, args.n, args.conventional, args.archimedean, args.informed_sender |
|
) |
|
|
|
sender = utils.load_model(args.sender) |
|
receiver = utils.load_model(args.receiver) |
|
sender.eval() |
|
receiver.eval() |
|
if torch.cuda.is_available(): |
|
sender.cuda() |
|
receiver.cuda() |
|
|
|
reshape_reward = lambda _0, _1, reward, _2: args.reward_scale * reward |
|
obss_preprocessor = utils_sr.MultiObssPreprocessor( |
|
[args.sender, args.receiver], [envs[0].observation_space] * 2 |
|
) |
|
test_algo = TestAlgo( |
|
penv, |
|
[sender, receiver], |
|
args.frames_per_proc, |
|
args.discount, |
|
args.gae_lambda, |
|
obss_preprocessor, |
|
reshape_reward, |
|
not args.no_comm, |
|
args.conventional, |
|
not args.sample, |
|
) |
|
|
|
return test_algo.collect_episodes(args.episodes) |
|
|
|
|
|
def write_results(args: Namespace, message_list: List, logs: Dict) -> None: |
|
out_path = Path(f"../../data/{args.name}") |
|
out_path.mkdir(exist_ok=True, parents=True) |
|
|
|
return_per_episode = utils.synthesize(logs["return_per_episode"]) |
|
success_per_episode = utils.synthesize( |
|
[1 if r > 0 else 0 for r in logs["return_per_episode"]] |
|
) |
|
|
|
metrics = { |
|
"success_rate": success_per_episode["mean"], |
|
"success_rate_std": success_per_episode["std"], |
|
"reward_per_episode": return_per_episode["mean"], |
|
"reward_per_episode_std": return_per_episode["std"], |
|
} |
|
lib_util.write_system_metrics(out_path, metrics) |
|
|
|
with (out_path / "corpus.jsonl").open("w") as fo: |
|
for message in message_list: |
|
flat = [x for y in message for x in y] |
|
json.dump(flat, fo, indent=None) |
|
fo.write("\n") |
|
with (out_path / "corpus.structured.jsonl").open("w") as fo: |
|
for message in message_list: |
|
json.dump(message, fo, indent=None) |
|
fo.write("\n") |
|
|
|
|
|
def main() -> None: |
|
args = parse_args() |
|
message_list, logs = get_episodes(args) |
|
write_results(args, message_list, logs) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|