--- dataset_info: features: - name: video_id dtype: int64 - name: recall_score dtype: float64 - name: youtube_id dtype: string - name: ad_details struct: - name: Audio dtype: string - name: Brand dtype: string - name: Duration dtype: string - name: Orientation dtype: string - name: Pace dtype: string - name: Scenes list: - name: Colors dtype: string - name: Description dtype: string - name: Emotions dtype: string - name: Number dtype: string - name: Photography Style dtype: string - name: Tags dtype: string - name: Text Shown dtype: string - name: Tone dtype: string - name: Visual Complexity dtype: string - name: Title dtype: string splits: - name: train num_bytes: 5490622.457169034 num_examples: 1964 - name: test num_bytes: 612243.5428309665 num_examples: 219 download_size: 2551503 dataset_size: 6102866.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- ## Dataset Description - **Website:** https://behavior-in-the-wild.github.io/memorability.html - **Paper:** https://arxiv.org/pdf/2309.00378 ### Dataset Summary LAMDBA is a long term ad memorability dataset, featuring data from 1749 participants and 2205 ads across 276 brands. ## Dataset Structure ```python from datasets import load_dataset ds = load_dataset("behavior-in-the-wild/LAMBDA") ds DatasetDict({ train: Dataset({ features: ['video_id', 'recall_score', 'youtube_id', 'ad_details'], num_rows: 1964 }) test: Dataset({ features: ['video_id', 'recall_score', 'youtube_id', 'ad_details'], num_rows: 219 }) }) ``` ### Data Fields - `video_id`: identifier for the data sample - `recall_score`: memorability score for the video between 0 to 1 - `youtube_id`: youtube id for the video - `ad_details`: scene by scene features for each video