Datasets:

ArXiv:
License:
european_art / european_art.py
davanstrien's picture
davanstrien HF staff
draft dataset
52fe1d5
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for reading 'You Actually Look Twice At it (YALTAi)' dataset."""
import contextlib
from typing import Dict
import requests
import datasets
from PIL import Image
from pathlib import Path
import xml.etree.ElementTree as ET
from xml.etree.ElementTree import Element
from typing import Any, List
from pathlib import PosixPath
_CITATION = """\
@dataset{clerice_thibault_2022_6827706,
author = {Clérice, Thibault},
title = {YALTAi: Tabular Dataset},
month = jul,
year = 2022,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.6827706},
url = {https://doi.org/10.5281/zenodo.6827706}
}
"""
_DESCRIPTION = """Yalt AI Tabular Dataset"""
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6984525"
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 2.0 Generic"
ZENODO_API_URL = "https://zenodo.org/api/records/6984525"
_CATEGORIES = [
"zebra",
"tree",
"nude",
"crucifixion",
"scroll",
"head",
"swan",
"shield",
"lily",
"mouse",
"knight",
"dragon",
"horn",
"dog",
"palm",
"tiara",
"helmet",
"sheep",
"deer",
"person",
"sword",
"rooster",
"bear",
"halo",
"lion",
"monkey",
"prayer",
"crown of thorns",
"elephant",
"zucchetto",
"unicorn",
"holy shroud",
"cat",
"apple",
"banana",
"chalice",
"bird",
"eagle",
"pegasus",
"crown",
"camauro",
"saturno",
"arrow",
"dove",
"centaur",
"horse",
"hands",
"skull",
"orange",
"monk",
"trumpet",
"key of heaven",
"fish",
"cow",
"angel",
"devil",
"book",
"stole",
"butterfly",
"serpent",
"judith",
"mitre",
"banner",
"donkey",
"shepherd",
"boat",
"god the father",
"crozier",
"jug",
"lance",
]
_POSES = [
"stand",
"sit",
"partial",
"Unspecified",
"squats",
"lie",
"bend",
"fall",
"walk",
"push",
"pray",
"undefined",
"kneel",
"unrecognize",
"unknown",
"other",
"ride",
]
logger = datasets.utils.logging.get_logger(__name__)
def parse_annotation(annotations_object: Element) -> Dict[str, Any]:
with contextlib.suppress(ValueError):
name = annotations_object.find("name").text
pose = annotations_object.find("pose").text
diffult = int(annotations_object.find("difficult").text)
bndbox = annotations_object.find("bndbox")
xmin = float(bndbox.find("xmin").text)
ymin = float(bndbox.find("ymin").text)
xmax = float(bndbox.find("xmax").text)
ymax = float(bndbox.find("ymax").text)
return {
"name": name,
"pose": pose,
"diffult": diffult,
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
def create_annotations_dict(xmls: List[PosixPath]) -> Dict[str, Any]:
annotations = {}
for xml in xmls:
tree = ET.parse(xml)
root = tree.getroot()
filename = root.find("filename").text
source = root.find("source/database").text
size = root.find("size")
width = int(size.find("width").text)
height = int(size.find("height").text)
depth = int(size.find("depth").text)
segmented = root.find("segmented")
segmented = int(segmented.text) if segmented else None
annotation_objects = root.findall("object")
annotation_objects = [
parse_annotation(annotation) for annotation in annotation_objects
]
annotation_objects = [
annotation for annotation in annotation_objects if annotation is not None
]
annotations[filename] = {
"source": source,
"width": width,
"height": height,
"dept": depth,
"segmented": segmented,
"objects": annotation_objects,
}
return annotations
def get_coco_annotation_from_obj(
image_id, label, xmin, ymin, xmax, ymax
): # adapted from https://github.com/yukkyo/voc2coco/blob/abd05bbfa0740a04bb483862eccea2032bc80e24/voc2coco.py#L60
category_id = label
assert xmax > xmin and ymax > ymin, logger.warn(
f"Box size error !: (xmin, ymin, xmax, ymax): {xmin, ymin, xmax, ymax}"
)
o_width = xmax - xmin
o_height = ymax - ymin
ann = {
"image_id": image_id,
"area": o_width * o_height,
"iscrowd": 0,
"bbox": [xmin, ymin, o_width, o_height],
"category_id": category_id,
# "ignore": 0,
"segmentation": [],
}
return ann
common_features = features = datasets.Features(
{
# "image_id": datasets.Value("int64"),
"image": datasets.Image(),
"source": datasets.Value("string"),
"width": datasets.Value("int16"),
"height": datasets.Value("int16"),
"dept": datasets.Value("int8"),
"segmented": datasets.Value("int8"),
}
)
class DeartDatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for YaltAiTabularDataset."""
def __init__(self, name, **kwargs):
"""BuilderConfig for YaltAiTabularDataset."""
super(DeartDatasetConfig, self).__init__(
version=datasets.Version("1.0.0"), name=name, description=None, **kwargs
)
class DeartDataset(datasets.GeneratorBasedBuilder):
"""Object Detection for historic manuscripts"""
BUILDER_CONFIGS = [
DeartDatasetConfig("raw"),
DeartDatasetConfig("coco"),
]
def _info(self):
if self.config.name == "coco":
features = common_features
features["image_id"] = datasets.Value("string")
object_dict = {
"category_id": datasets.ClassLabel(names=_CATEGORIES),
"image_id": datasets.Value("string"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"segmentation": [[datasets.Value("float32")]],
"iscrowd": datasets.Value("bool"),
}
features["objects"] = [object_dict]
if self.config.name == "raw":
features = common_features
object_dict = {
"name": datasets.ClassLabel(names=_CATEGORIES),
"pose": datasets.ClassLabel(names=_POSES),
"diffult": datasets.Value("int32"),
"xmin": datasets.Value("float64"),
"ymin": datasets.Value("float64"),
"xmax": datasets.Value("float64"),
"ymax": datasets.Value("float64"),
}
features["objects"] = [object_dict]
return datasets.DatasetInfo(
features=features,
supervised_keys=None,
description=_DESCRIPTION,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
zenodo_record = requests.get(ZENODO_API_URL).json()
urls = sorted(
[
file["links"]["self"]
for file in zenodo_record["files"]
if file["type"] == "zip"
]
)
annotation_data = urls.pop(0)
annotation_data = dl_manager.download_and_extract(annotation_data)
image_data = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotations_data": Path(annotation_data),
"image_data": image_data,
},
),
]
def _generate_examples(self, annotations_data, image_data):
xmls = list(annotations_data.rglob("*.xml"))
annotations_data = create_annotations_dict(xmls)
count = 0
for directory in image_data:
for file in Path(directory).glob("*.jpg"):
with Image.open(file) as image:
try:
if self.config.name == "raw":
example = annotations_data[file.name]
example["image"] = image
count += 1
yield count, example
if self.config.name == "coco":
updated_annotations = []
example = annotations_data[file.name]
annotations = example["objects"]
for annotation in annotations:
label = annotation["name"]
xmin, ymin = annotation["xmin"], annotation["ymin"]
xmax, ymax = annotation["xmax"], annotation["ymax"]
updated_annotations.append(
get_coco_annotation_from_obj(
count, label, xmin, ymin, xmax, ymax
),
)
example["image"] = image
example["objects"] = updated_annotations
example["image_id"] = str(count)
count += 1
yield count, example
except Exception:
logger.warn(file.name)
continue