|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Script for reading 'Object Detection for Chess Pieces' dataset.""" |
|
|
|
|
|
import os |
|
from glob import glob |
|
|
|
import datasets |
|
from PIL import Image |
|
|
|
_CITATION = """\ |
|
@dataset{clerice_thibault_2022_6827706, |
|
author = {Clérice, Thibault}, |
|
title = {YALTAi: Tabular Dataset}, |
|
month = jul, |
|
year = 2022, |
|
publisher = {Zenodo}, |
|
version = {1.0.0}, |
|
doi = {10.5281/zenodo.6827706}, |
|
url = {https://doi.org/10.5281/zenodo.6827706} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """Yalt AI Tabular Dataset""" |
|
|
|
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International" |
|
|
|
_URL = "https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1" |
|
|
|
_CATEGORIES = ["Header", "Col", "Marginal", "text"] |
|
|
|
|
|
class YaltAiTabularDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for YaltAiTabularDataset.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
"""BuilderConfig for YaltAiTabularDataset.""" |
|
super(YaltAiTabularDatasetConfig, self).__init__( |
|
version=datasets.Version("1.0.0"), name=name, description=None, **kwargs |
|
) |
|
|
|
|
|
class YaltAiTabularDataset(datasets.GeneratorBasedBuilder): |
|
"""Object Detection for historic manuscripts""" |
|
|
|
BUILDER_CONFIGS = [ |
|
YaltAiTabularDatasetConfig("YOLO"), |
|
YaltAiTabularDatasetConfig("COCO"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "COCO": |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
} |
|
) |
|
object_dict = { |
|
"category_id": datasets.ClassLabel(names=_CATEGORIES), |
|
"image_id": datasets.Value("string"), |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"segmentation": [[datasets.Value("float32")]], |
|
"iscrowd": datasets.Value("bool"), |
|
} |
|
features["objects"] = [object_dict] |
|
if self.config.name == "YOLO": |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"objects": datasets.Sequence( |
|
{ |
|
"label": datasets.ClassLabel(names=_CATEGORIES), |
|
"bbox": datasets.Sequence( |
|
datasets.Value("int32"), length=4 |
|
), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
features=features, |
|
supervised_keys=None, |
|
description=_DESCRIPTION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": os.path.join(data_dir, "yaltai-table/", "train") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data_dir": os.path.join(data_dir, "yaltai-table/", "val")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_dir": os.path.join(data_dir, "yaltai-table/", "test") |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
def create_annotation_from_yolo_format( |
|
min_x, |
|
min_y, |
|
width, |
|
height, |
|
image_id, |
|
category_id, |
|
annotation_id, |
|
segmentation=False, |
|
): |
|
bbox = (float(min_x), float(min_y), float(width), float(height)) |
|
area = width * height |
|
max_x = min_x + width |
|
max_y = min_y + height |
|
if segmentation: |
|
seg = [[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]] |
|
else: |
|
seg = [] |
|
return { |
|
"id": annotation_id, |
|
"image_id": image_id, |
|
"bbox": bbox, |
|
"area": area, |
|
"iscrowd": 0, |
|
"category_id": category_id, |
|
"segmentation": seg, |
|
} |
|
|
|
image_dir = os.path.join(data_dir, "images") |
|
label_dir = os.path.join(data_dir, "labels") |
|
image_paths = sorted(glob(f"{image_dir}/*.jpg")) |
|
label_paths = sorted(glob(f"{label_dir}/*.txt")) |
|
if self.config.name == "COCO": |
|
for idx, (image_path, label_path) in enumerate( |
|
zip(image_paths, label_paths) |
|
): |
|
image_id = idx |
|
annotations = [] |
|
image = Image.open(image_path) |
|
w, h = image.size |
|
with open(label_path, "r") as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
line = line.strip().split() |
|
category_id = line[0] |
|
x_center = float(line[1]) |
|
y_center = float(line[2]) |
|
width = float(line[3]) |
|
height = float(line[4]) |
|
|
|
float_x_center = w * x_center |
|
float_y_center = h * y_center |
|
float_width = w * width |
|
float_height = h * height |
|
|
|
min_x = int(float_x_center - float_width / 2) |
|
min_y = int(float_y_center - float_height / 2) |
|
width = int(float_width) |
|
height = int(float_height) |
|
|
|
annotation = create_annotation_from_yolo_format( |
|
min_x, |
|
min_y, |
|
width, |
|
height, |
|
image_id, |
|
category_id, |
|
image_id, |
|
) |
|
annotations.append(annotation) |
|
|
|
example = { |
|
"image_id": image_id, |
|
"image": image, |
|
"width": w, |
|
"height": h, |
|
"objects": annotations, |
|
} |
|
yield idx, example |
|
if self.config.name == "YOLO": |
|
for idx, (image_path, label_path) in enumerate( |
|
zip(image_paths, label_paths) |
|
): |
|
im = Image.open(image_path) |
|
width, height = im.size |
|
image_id = idx |
|
annotations = [] |
|
with open(label_path, "r") as f: |
|
lines = f.readlines() |
|
objects = [] |
|
for line in lines: |
|
line = line.strip().split() |
|
bbox_class = int(line[0]) |
|
bbox_xcenter = int(float(line[1]) * width) |
|
bbox_ycenter = int(float(line[2]) * height) |
|
bbox_width = int(float(line[3]) * width) |
|
bbox_height = int(float(line[4]) * height) |
|
objects.append( |
|
{ |
|
"label": bbox_class, |
|
"bbox": [ |
|
bbox_xcenter, |
|
bbox_ycenter, |
|
bbox_width, |
|
bbox_height, |
|
], |
|
} |
|
) |
|
|
|
yield idx, { |
|
"image": image_path, |
|
"objects": objects, |
|
} |
|
|