|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""P3 (Public Pool of Prompts)""" |
|
|
|
|
|
import datasets |
|
import glob |
|
import json |
|
import os |
|
from collections import defaultdict |
|
import tensorflow as tf |
|
|
|
|
|
_CITATION = """\ |
|
TODO""" |
|
|
|
_DESCRIPTION = """\ |
|
P3 (Pubic Pool of Prompts)is a collection of prompted English datasets covering a diverse set of NLP tasks. A prompt is the combination of an input template and a target template. The templates are functions mapping a data example into natural language for the input and target sequences. For example, in the case of an NLI dataset, the data example would include fields for *Premise, Hypothesis, Label*. An input template would be *If {Premise} is true, is it also true that {Hypothesis}?*, whereas a target template can be defined with the label choices *Choices[label]*. Here *Choices* is prompt-specific metadata that consists of the options *yes, maybe, no* corresponding to *label* being entailment (0), neutral (1) or contradiction (2). |
|
|
|
Prompts are collected using [Promptsource](https://github.com/bigscience-workshop/promptsource), an interface to interactively write prompts on datasets, and collect prompt-specific metadata such as evaluation metrics. As of October 13th, there are 2'000 prompts collected for 270+ data(sub)sets. The collection of prompts is publicly available on [Promptsource](https://github.com/bigscience-workshop/promptsource). |
|
|
|
To train [T0*](https://huggingface.co/bigscience/T0pp), we used a subset of the prompts available in Promptsource (see details [here](https://huggingface.co/bigscience/T0pp#training-data)). However, some of the prompts use `random.choice`, a method that selects uniformly at random an option in a list of valid possibilities. For reproducibility purposes, we release the collection of prompted examples used to train T0*. **The data available here are the materialized version of the prompted datasets used in [Multi-task enables task zero-shot generalization](TODO) which represent only a subset datasets for which there is at least one prompt on Promptsource.** |
|
""" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_HOMEPAGE = "https://github.com/bigscience-workshop/promptsource" |
|
|
|
_DATA_PATH = "data" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_cached_task(features_file, tfrecord, split): |
|
|
|
|
|
|
|
|
|
with tf.io.gfile.GFile(features_file) as f: |
|
features = json.load(f) |
|
|
|
|
|
def _feature_config(shape, dtype): |
|
if dtype in ("int32", "bool"): |
|
|
|
dtype = "int64" |
|
if shape and shape[0] is None: |
|
return tf.io.FixedLenSequenceFeature( |
|
shape[1:], dtype, allow_missing=True |
|
) |
|
return tf.io.FixedLenFeature(shape, dtype) |
|
|
|
feature_description = { |
|
feat: _feature_config(**desc) for feat, desc in features.items() |
|
} |
|
|
|
|
|
|
|
|
|
ds = tf.data.TFRecordDataset(tf.io.gfile.glob([tfrecord])) |
|
ds = ds.map( |
|
lambda pb: tf.io.parse_single_example(pb, feature_description), |
|
num_parallel_calls=tf.data.experimental.AUTOTUNE |
|
) |
|
|
|
|
|
ds = ds.map( |
|
lambda x: {k: tf.cast(v, features[k]["dtype"]) for k, v in x.items()}, |
|
num_parallel_calls=tf.data.experimental.AUTOTUNE |
|
) |
|
return ds |
|
|
|
def find_task_splits_and_features(): |
|
"""Find the available tasks under ./data and their available splits and features.""" |
|
task_and_their_splits = defaultdict(dict) |
|
for stats in glob.glob(f"{_DATA_PATH}/*/stats.*.json"): |
|
folder_path = os.path.dirname(stats) |
|
task_name = folder_path.split("/")[-1] |
|
if "rte" not in task_name: |
|
continue |
|
split_name = os.path.basename(stats).split(".")[1] |
|
|
|
if not os.path.exists(f"{folder_path}/COMPLETED"): |
|
continue |
|
|
|
with open(stats, "r") as f: |
|
split_stats = json.load(f) |
|
nb_examples = split_stats["examples"] |
|
|
|
if nb_examples > 0: |
|
with open(os.path.join(folder_path, f"info.{split_name}.json")) as f: |
|
split_info = json.load(f) |
|
features = split_info["features"] |
|
assert split_info["num_shards"] == 1 |
|
|
|
|
|
if task_and_their_splits[task_name] == {}: |
|
task_and_their_splits[task_name] = { |
|
"splits": [], |
|
"features": [], |
|
} |
|
|
|
task_and_their_splits[task_name]["splits"].append(split_name) |
|
if task_and_their_splits[task_name]["features"] == []: |
|
task_and_their_splits[task_name]["features"] = sorted(list(features.keys())) |
|
else: |
|
assert task_and_their_splits[task_name]["features"] == sorted(list(features.keys())) |
|
print(task_and_their_splits.keys()) |
|
return task_and_their_splits |
|
|
|
|
|
_TASK_SPLITS_AND_FEATURES = find_task_splits_and_features() |
|
_URLs = { |
|
task_name: { |
|
split_name: { |
|
"tfrecord": f"{_DATA_PATH}/{task_name}/{split_name}.tfrecord-00000-of-00001", |
|
"features_file": f"{_DATA_PATH}/{task_name}/info.{split_name}.json", |
|
} |
|
for split_name in splits_and_features["splits"] |
|
} |
|
for task_name, splits_and_features in _TASK_SPLITS_AND_FEATURES.items() |
|
} |
|
|
|
|
|
class P3Config(datasets.BuilderConfig): |
|
"""BuilderConfig for P3.""" |
|
|
|
def __init__(self, splits, features, score_eval, **kwargs): |
|
"""BuilderConfig for P3. |
|
|
|
Args: |
|
splits: `List[str]`, the lists of splits which are available for this task |
|
features: `List[str]`, the list of features for this task |
|
score_eval: `bool`, whether this is task formulated as a rank classification problem |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
super(P3Config, self).__init__(version=datasets.Version("0.1.0"), **kwargs) |
|
self.splits = splits |
|
self.features = features |
|
self.score_eval = score_eval |
|
|
|
|
|
class P3(datasets.GeneratorBasedBuilder): |
|
"""Subset of P3 used in `Multitask Prompted Training Enables Zero-Shot Task Generalization`""" |
|
|
|
BUILDER_CONFIGS = [ |
|
P3Config( |
|
name=task_name, |
|
splits=splits_and_features["splits"], |
|
features=splits_and_features["features"], |
|
score_eval=task_name.endswith("score_eval") |
|
) |
|
for task_name, splits_and_features in _TASK_SPLITS_AND_FEATURES.items() |
|
] |
|
|
|
def _info(self): |
|
|
|
|
|
_FEAT_MAPPING = { |
|
"answer_choices": datasets.Sequence(datasets.Value("string")), |
|
"inputs": datasets.Sequence(datasets.Value("int32")), |
|
"inputs_pretokenized": datasets.Value("string"), |
|
"targets": datasets.Sequence(datasets.Value("int32")), |
|
"targets_pretokenized": datasets.Value("string"), |
|
"idx": datasets.Sequence(datasets.Value("int32")), |
|
"weight": datasets.Value("float32"), |
|
"is_correct": datasets.Value("bool"), |
|
} |
|
|
|
features = {} |
|
for feat_name in self.config.features: |
|
features[feat_name] = _FEAT_MAPPING[feat_name] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
split_generators = [] |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
task_name = self.config.name |
|
if "train" in self.config.splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"features_file": data_dir[task_name]["features_file"], |
|
"tfrecord": data_dir[task_name]["tfrecord"], |
|
"split": "train", |
|
} |
|
) |
|
) |
|
if "validation" in self.config.splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"features_file": data_dir[task_name]["features_file"], |
|
"tfrecord": data_dir[task_name]["tfrecord"], |
|
"split": "validation", |
|
} |
|
) |
|
) |
|
if "test" in self.config.splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"features_file": data_dir[task_name]["features_file"], |
|
"tfrecord": data_dir[task_name]["tfrecord"], |
|
"split": "test", |
|
} |
|
) |
|
) |
|
|
|
special_splits = set(self.config.splits) - set(["train", "validation", "test"]) |
|
for special_split_name in special_splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split(special_split_name), |
|
gen_kwargs={ |
|
"features_file": data_dir[task_name]["features_file"], |
|
"tfrecord": data_dir[task_name]["tfrecord"], |
|
"split": special_split_name, |
|
} |
|
) |
|
) |
|
return split_generators |
|
|
|
|
|
def _generate_examples(self, features_file, tfrecord, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
_FEAT_MAPPING_FUNCTIONS = { |
|
"answer_choices": lambda x: [choice.decode("utf-8") for choice in x], |
|
"inputs": lambda x: x.tolist(), |
|
"inputs_pretokenized": lambda x: x.decode("utf-8"), |
|
"targets": lambda x: x.tolist(), |
|
"targets_pretokenized": lambda x: x.decode("utf-8"), |
|
"idx": lambda x: x.tolist(), |
|
"weight": lambda x: float(x), |
|
"is_correct": lambda x: x, |
|
} |
|
|
|
key = 0 |
|
ds = load_cached_task(features_file, tfrecord, split) |
|
for ex in ds.as_numpy_iterator(): |
|
ex_dict = {} |
|
for feat_name, feat_value in ex.items(): |
|
ex_dict[feat_name] = _FEAT_MAPPING_FUNCTIONS[feat_name](feat_value) |
|
yield key, ex_dict |
|
key += 1 |
|
|