Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Russian
Size:
10K - 100K
License:
File size: 1,468 Bytes
2b1b387 162d0e2 2b1b387 162d0e2 cd5097e b0f6513 f8313c6 b0f6513 bf81393 2b1b387 b0f6513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import datasets
import pandas as pd
class KinopoiskReviewsConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(KinopoiskReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class Kinopoisk(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
KinopoiskReviewsConfig(
name="plain_text",
description="Plain text",
)
]
def _info(self):
return datasets.DatasetInfo(
description='Kinopoisk movie reviews dataset.',
features=datasets.Features(
{
"content": datasets.Value("string"),
"title": datasets.Value("string"),
"grade3": datasets.Value("string"),
"movie_name": datasets.Value("string"),
"part": datasets.Value("string"),
"review_id": datasets.Value("string"),
"author": datasets.Value("string"),
"date":datasets.Value("string")
}
),
supervised_keys=None,
homepage='',
citation='',
)
def _generate_examples(self, filepath):
df = pd.read_json(filepath, lines=True)
rows = df.to_dict(orient="records")
for n, row in enumerate(rows):
example = row
example["Idx"] = n
yield example["Idx"], example
|