File size: 1,316 Bytes
aa58f36
2f75124
aa58f36
 
 
 
 
 
 
4f5532b
 
6026341
 
aa58f36
 
09bbbc8
 
caf8256
a96e6f9
caf8256
 
 
1bf9479
 
 
caf8256
1bf9479
 
 
 
 
 
 
 
 
 
 
 
 
622693d
a96e6f9
 
 
 
09bbbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
language:
- ru
multilinguality:
- monolingual
pretty_name: Kinopoisk
size_categories:
- 10K<n<100K
task_categories:
- text-classification
- sentiment-analysis
task_ids:
- sentiment-classification
---

### Dataset Summary

Kinopoisk movie reviews dataset (TOP250 & BOTTOM100 rank lists).

In total it contains 36,591 reviews from July 2004 to November 2012.

With following distribution along the 3-point sentiment scale:
- Good: 27,264;
- Bad: 4,751;
- Neutral: 4,576.

### Data Fields

Each sample contains the following fields:
- **part**: rank list top250 or bottom100;
- **movie_name**;
- **review_id**;
- **author**: review author;
- **date**: date of a review;
- **title**: review title;
- **grade3**: sentiment score Good, Bad or Neutral;
- **grade10**: sentiment score on a 10-point scale parsed from text;
- **content**: review text.

### Python
```python3
import pandas as pd
df = pd.read_json('kinopoisk.jsonl', lines=True)
df.sample(5)
```

### Citation
```
@article{blinov2013research,
  title={Research of lexical approach and machine learning methods for sentiment analysis},
  author={Blinov, PD and Klekovkina, Maria and Kotelnikov, Eugeny and Pestov, Oleg},
  journal={Computational Linguistics and Intellectual Technologies},
  volume={2},
  number={12},
  pages={48--58},
  year={2013}
}
```