Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Russian
Size:
10K - 100K
License:
File size: 1,405 Bytes
2b1b387 dad6849 162d0e2 2b1b387 dad6849 cd5097e b0f6513 4a96ae8 b0f6513 c32e533 b0f6513 bf81393 2b1b387 b0f6513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import datasets
import pandas as pd
class KinopoiskReviewsConfig(datasets.BuilderConfig):
def __init__(self, features, **kwargs):
super(KinopoiskReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.features = features
class Kinopoisk(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
KinopoiskReviewsConfig(
name="simple",
description="Simple config",
features=["content", "title", "grade3", "movie_name", "part", "review_id", "author", "date"],
)
]
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
#if self.config.name == "simple":
# features = {feature: datasets.Value("string") for feature in self.config.features}
features["Idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description='Kinopoisk movie reviews dataset.',
features=datasets.Features(features),
supervised_keys=None,
homepage='',
citation='',
)
def _generate_examples(self, filepath):
df = pd.read_json(filepath, lines=True)
rows = df.to_dict(orient="records")
for n, row in enumerate(rows):
example = row
example["Idx"] = n
yield example["Idx"], example
|