File size: 5,425 Bytes
563b28c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""LR-Sum summarization dataset"""

import json
import os

import datasets

_CITATION = """\
@inproceedings{palen-michel-lignos-2023-lr,
    title = "{LR}-Sum: Summarization for Less-Resourced Languages",
    author = "Palen-Michel, Chester  and
      Lignos, Constantine",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-acl.427",
    doi = "10.18653/v1/2023.findings-acl.427",
    pages = "6829--6844",
    abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
}
"""

_DESCRIPTION = """\
We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages. 
LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. 
We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).
The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. 
We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.
"""

_HOMEPAGE = "https://github.com/bltlab"

_LICENSE = "Creative Commons Attribution 4.0 International (CC-BY 4.0)"

_URL = "https://huggingface.co/datasets/bltlab/lr-sum/resolve/main/data/{}.zip"

_LANGUAGES = [
    "amh",
    "aze",
    "ben",
    "bod",
    "bos",
    "ckb",
    "cmn_t",
    "cmn_s",
    "ell",
    "eng",
    "fas",
    "fra",
    "hat",
    "hau",
    "hye",
    "ind",
    "kat",
    "khm",
    "kin",
    "kor",
    "kmr",
    "lao",
    "mkd",
    "mya",
    "nde",
    "por",
    "prs",
    "pus",
    "rus",
    "sna",
    "som",
    "spa",
    "sqi",
    "srp",
    "swh",
    "tha",
    "tir",
    "tur",
    "ukr",
    "urd",
    "uzb",
    "vie",
]


class Lrsum(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="{}".format(lang),
            version=datasets.Version("1.0.0")
        )
        for lang in _LANGUAGES
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "text": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        lang = str(self.config.name)
        url = _URL.format(lang)

        data_dir = dl_manager.download_and_extract(url)
        ret = [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, lang + "_test.jsonl"),
                },
            )
        ]
        if os.path.exists(os.path.join(data_dir, lang + "_train.jsonl")):
            ret.append(datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, lang + "_train.jsonl"),
                },
            )
            )
        if os.path.exists(os.path.join(data_dir, lang + "_val.jsonl")):
            ret.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, lang + "_val.jsonl"),
                    },
                )
            )

        return ret

    def _generate_examples(self, filepath):
        """Yields examples as (key, example) tuples."""
        with open(filepath, encoding="utf-8") as f:
            for idx_, row in enumerate(f):
                data = json.loads(row)
                yield idx_, {
                    "id": data["id"],
                    "url": data["url"],
                    "title": data["title"],
                    "summary": data["summary"],
                    "text": data["text"],
                }