"""LR-Sum summarization dataset""" import json import os import datasets _CITATION = """\ @inproceedings{palen-michel-lignos-2023-lr, title = "{LR}-Sum: Summarization for Less-Resourced Languages", author = "Palen-Michel, Chester and Lignos, Constantine", booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-acl.427", doi = "10.18653/v1/2023.findings-acl.427", pages = "6829--6844", abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.", } """ _DESCRIPTION = """\ We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages. LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022). The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset. """ _HOMEPAGE = "https://github.com/bltlab" _LICENSE = "Creative Commons Attribution 4.0 International (CC-BY 4.0)" _URL = "https://huggingface.co/datasets/bltlab/lr-sum/resolve/main/data/{}.tar.bz2" _LANGUAGES = [ "amh", "aze", "ben", "bod", "bos", "ckb", "cmn_t", "cmn_s", "ell", "eng", "fas", "fra", "hat", "hau", "hye", "ind", "kat", "khm", "kin", "kor", "kmr", "lao", "mkd", "mya", "nde", "por", "prs", "pus", "rus", "sna", "som", "spa", "sqi", "srp", "swh", "tha", "tir", "tur", "ukr", "urd", "uzb", "vie", ] class Lrsum(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="{}".format(lang), version=datasets.Version("1.0.0") ) for lang in _LANGUAGES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "url": datasets.Value("string"), "title": datasets.Value("string"), "summary": datasets.Value("string"), "text": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, version=self.VERSION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" lang = str(self.config.name) url = _URL.format(lang) data_dir = dl_manager.download_and_extract(url) ret = [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, lang + "_test.jsonl"), }, ) ] if os.path.exists(os.path.join(data_dir, lang + "_train.jsonl")): ret.append(datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, lang + "_train.jsonl"), }, ) ) if os.path.exists(os.path.join(data_dir, lang + "_val.jsonl")): ret.append( datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(data_dir, lang + "_val.jsonl"), }, ) ) return ret def _generate_examples(self, filepath): """Yields examples as (key, example) tuples.""" with open(filepath, encoding="utf-8") as f: for idx_, row in enumerate(f): data = json.loads(row) yield idx_, { "id": data["id"], "url": data["url"], "title": data["title"], "summary": data["summary"], "text": data["text"], }